هندسه اقلیدسی
هندسه نا اقلیدسی
باور مردم از زمان یونانیان باستان تا قرن نوزدهم این بود که هندسه ی اقلیدسی، حقیقت محض و بی کاستی است که فضای مادی را بطور کامل توجیه می کند. حتی کانت اعتقاد داشت که هندسه ی اقلیدسی، ذاتی ساختار ذهن انسان است…اما هندسه دانهای قرن نوزدهم نشان دادند که اولا هندسه ی اقلیدسی تنها هندسه ی ممکن نیست، ثانیا این که هندسه فضای مادی اقلیدسی یا نا اقلیدسی است، امری تجربی است که خارج از حیطه ی ریاضیات محض می باشد و ثالثا هندسه ی اقلیدسی سازگارتر است، اگر و فقط اگر هندسه ی نااقلیدسی سازگار باشد یعنی این دو هندسه به بیانی نادقیق ، به یک نسبت درستند. ب) تاریخچه ی پیدایش هندسه ی نااقلیدسی در حدود سیصد سال قبل از میلاد، اقلیدس کتاب «مقدمات» خود را به رشته ی تحریر در آورد، او بر اساس پنچ اصل موضوع و تعدادی اصطلاح اولیه تمام هندسه ی شناخته شده تا زمان خود را بصورت دستگاهمند و به روش اصل موضوعی در کتابش ذکر کرد. یکی از اصل های اقلیدس که بیشتر از همه توجه ریاضیدانان را بخود جلب کرد، اصل پنجم این کتاب بود. اقلیدس این اصل را که به «اصل توازی» معروف شده است این طور بیان می دارد: "اگر خطی دو خط را چنان قطع کند که مجموع زوایای داخلی کتر از دو قائمه باشد، آن گاه دو خط همدیگر را در همان طرف قطع می کنند." که بعدها معادل آن یعنی:«از هر نقطه خارج یک خط راست، تنها یک خط راست موازی با آن خط و در همان صفحه ی مفروض میتوان رسم کرد.» تنظیم شد. تلاش برای اثبات این اصل براساس چهار اصل دیگربه بیش از بیست قرن انجامید و در این مدت بنظر می رسید که هندسه با بن بست مواجه شده است. در واقع از همان زمان که کتاب مقدمات اقلیدس نوشته شد، بحث و تفسیر درباره ی آن آغاز گشت، این بحث ها از دو جهت بود: برطرف کردن ابهام هایی که در«تعریف ها»، «اصل ها» و «قضیه ها» وجود داشت.1) 2)بحث درباره ی اصل توازی اما با وجود اینکه دانشمندان برای اثبات دقیق این اصل با عدم موفقیت های فراوان مواجه شده بودند، باز هم دست از کوشش بر نداشتند دلیل آن این بود که علمای هندسه اعتقاد داشتند که بدون روشن کردن موقعیت این اصل نمی توان ساختمان هندسه را بطور دقیق و کامل انجام داد، این تلاش ها سرانجام به کشف هندسه های نااقلیدسی منجر شد. می گویند اولین کسی که به استقلال اصل پنجم یا به گفته ی کایزر «مشهورترین تک سخن در تاریخ علم» شک کرد، خود اقلیدس بود. بعد از او بطلمیوس (حدود ۱۵۰ سال پیش از میلاد) برای اثبات آن برخاست. پرودوکلوس نیز در قرن پنجم شرحی بر کتاب اصول نوشت و ضمن نشان دادن اشتباه برهان های قبلی، تلاش کرد تا اثباتی در این زمینه ارائه کند. بعد از آن شاهد اثبات های دیگری بودیم که هیچ یک به نتیجه ...
هندسه اقلیدسی
هندسه اقلیدسی هندسهٔ اقلیدسی به مجموعهٔ گزارههایِ هندسیای اطلاق میشود که به بررسی موجودات ریاضیاتی مثل نقطه و خط میپردازد و بر پایههائی که اقلیدس ریاضیدان یونانی در کتاب خود بهنام اصول عرضه کرده، بنا شدهاست. این قضایایِ هندسی عمدتاً توسطِ یونانیانِ باستان کشف و توسطِ اقلیدسِ اسکندرانی گردآوری شدهاند و بخش بزرگی از آن همان است که در دبیرستانها تدریس میشود. کتابِ «اصولِ» اقلیدس یکی از بزرگترین و تأثیرگذارترین کتابها چه به لحاظِ محتوا و چه از نظرِ روشِ اصلِ موضوعهایاش بودهاست. تا قرن نوزدهم میلادی هر وقت از هندسه سخن میرفت منظور هندسه اقلیدسی بود. بررسی مفاهیم هندسه اقلیدسی در دو بعد را «هندسه مسطحه» و در سه بعد «هندسه فضائی» مینامند. این مفاهیم را به ابعاد بالاتر از سه نیز میتوان تعمیم داد و همچنان آن را هندسه اقلیدسی نامید. پیشینه در حدود ۳۰۱ سال قبل از میلاد دنیای هندسه در تب و تاب بود. نظرات مختلفی در زمینهٔ هندسه وجود داشت و سرانجام اقلیدس با انتشار کتاب اصول بنیادی را بنا نهاد که تا قرنها منسجمترین بنیادهای نظری بشر محسوب میشد. روش اقلیدس ساده بود او چند اصل موضوع و چند اصل متعارف را بدون اثبات به عنوان اصول بدیهی پذیرفت و سپس بر اساس آن صدها قضیه دیگر را اثبات کرد که بیشتر آنها بسیار دور از ذهن بودند. اقلیدس شاگرد مکتب افلاطون بود. او در اصول سیزده جلدی خود تمام دانش بشری تا آن زمان را گرد آورد که به مدت دو هزار سال بصورت مرجعی بیبدیل باقی ماند. روش بنداشتی (اصل موضوع) اقلیدس منجر به کاربرد الگویی شد که امروزه به آن ریاضیات محض میگوییم. محض از این نظر که با اندیشهٔ محض سر و کار دارد و از راه آزمون و خطا و تجربه به دست نمیآید و درستی یا نادرستی احکام آن را نیز از راه تجربه نمیتوان اثبات یا نفی کرد. برای استفاده از روش بنداشتی یا اصل موضوع دو شرط را باید پذیرفت: شرط اول: پذیرفتن احکامی به نام بنداشت یا اصل موضوع که به هیچ توجیه دیگری نیاز نداشته باشند. شرط دوم: توافق بر اینکه کی و چگونه حکمی «به طور منطقی» از حکم دیگر نتیجه میشود، یعنی توافق در برخی قواعد استدلال.کار عظیم اقلیدس این بود که چند اصل ساده، چند حکم که بینیاز به توجیهی پذیرفتنی بودند دستچین کرد، و از آنها ۴۶۵ گزاره نتیجه گرفت. زیبایی کار اقلیدس در این است که این همه را از آن اندک نتیجه گرفت. اصول موضوعه نوشتار اصلی: اصول موضوعه هندسه اقلیدسی تمامِ هندسهٔ اقلیدسی (تمامِ قضیههایی که در دبیرستان میخوانیم، قضیهٔ فیثاغورس و غیره) میتوانند از پنج اصلِ موضوعهٔ زیر استخراج ...
از هندسه اقلیدسی تا کشف هندسه های نا اقلیدسی 1
هندسه اقلیدسی <?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> هدف اعضای حلقه وین این بود که انقلابهایی را که در حوزه های دیگر دانش بشری از قبیل فیزیک ، منطق ، هندسه و ... رخ داده بود وارد فلسفه کنند . هندسه حوزه ای از معرفت بشری است که پس ازگذشت 20 قرن از ابداع آن دچار تحول اساسی شده است . هدف این نوشته بررسی ساختار هندسه اقلیدسی و دلیل اهمیت آن است تا سر آغازی برای بحث درباره هندسه های نا اقلیدسی باشد . واژه هندسه از دو واژه یونانی "ژئو " به معنای زمین و "متراین " به معنای اندازه گیری آمده است . روش اقلیدس در کتاب 13 جلدی خود به نام اصول روش اصل موضوعی است . به این معنا که با استفاده از چند اصل و فرض گرفتن چند مفهوم اولیه به اثبات درستی قضایا و نتایج پرداخته می شود . برای اینکه بتوان در روش اصل موضوعی درستی برهانی را پذیرفت اولا باید برروی اصول موضوعه و ثانیا برروی قواعد استنتاج ، توافق وجود داشته باشد . کار عظیم اقلیدس این بود که از چند اصل ساده ، 465 گزاره نتیجه گرفت . و یک دلیل بر زیبایی " اصول " اقلیدس همین است که همه آن را از اصولی اندک نتیجه گرفته است . اقلیدس همه سعی خود را کرد که تمامی اصطلاحات هندسی را تعریف کند. اما این کار به فهمیدن بیشتر کمک نمی کند و دور یا تسلسل لازم می آید ( دور در تعریف ، دور بی خطری نیست . )مثلا سعی می کند خط مستقیم را اینگونه تعریف کند : خطی که به نحوی هموار بر نقاطی که بر آن هستند قرار داشته باشد . این تعریف خوبی نیست چون باید برای فهمیدن آن ، قبلا تصوری از خط داشته باشید . پس یک سری اصطلاحات بعنوان اصطلاحات تعریف نشده در نظر گرفته می شوند : نقطه خط قرار دارند بر میان ( مثلا نقطه A میان دو نقطه دیگر است ) قابلیت انطباق ( فراهم آوردن این لیست ، از کارهای هیلبرت است .) اقلیدس هندسه خود را بر 5 اصل بنا می نهد : 1- از هر دو نقطه متمایز ، یک و فقط یک خط می گذرد . 2- هر پاره خط AB را می توان به اندازه پاره خط BE که با پاره خط CD قابل انطباق است ادامه داد . 3- به ازای هر نقطه و هر پاره خط دلخواه ، دایره ای به مرکز آن نقطه وشعاع مذکور وجود دارد . 4- همه زوایای قائمه با هم برابرند . 5- اصل توازی : چهار اصل اول همواره مورد توافق ریاضیدانان بوده اند . اما اصل توازی تا قرن 19 مورد بحث و جدل فراوان قرار گرفته است . تلاش برای اثبات آن و ارائه صورتهای مختلفی از آن صور ت گرفته است . که همین تلاشها باعث ایجاد و بسط هندسه های نااقلیدسی شده است . تعریف (توازی ): دو خط با هم موازی اند هرگاه همدیگر را نبرند ، یعنی نقطه ای پیدا نشود که بر هر دو خط واقع باشد . اصل توازی : به ازای هر خط و هر نقطه غیر واقع برآن یک ...
اقليدس-هندسه ي اقليدسي-هندسه ي نا اقليدسي
اقليدس رياضيدان يوناني،پسر نوقطرس بن برنيقس،رياضيدان و منجم بزرگ تاريخ علم،به سال 323 ق.م متولد شد،وي از تبار فنيقی و نخستين رئيس بخش رياضيات بود، در زبان يونانی اقلی به معنی کليد و دس به معنای هندسه و اقليدس به معنای کليد هندسه است،در آن زمان مرگ اسكندر فرا رسيد و سردارانش براي كسب قدرت با يكديگر جنگيدند. بطلميوس يكي از سرداران اسكندر بود كه مصر را گرفت و در آن جا تشكيل حكومت داد. وي از علم و دانش حمايت مي كرد و دانشمندان و دوستداران علم و دانش را دعوت مي كرد تا در اسكندريه اقامت كنند. اقليدس بيش از 30 سال نداشت كه به خواهش و درخواست بطلميوس براي تدريس به اسكندريه رفت و در اين شهر مكتب فلسفي خود را پايه گذاري كرد. اقليدس مردي محبوب، آرام، فروتن و نيكوكار بود و در حضور مستبدان و سرداران زورگو در نهايت صراحت صحبت مي كرد. بطلميوس فرمانرواي مصر هنگامي كه خواست هندسه را بياموزد آن را دشوار ديد و ترجيح داد كه از راه ساده تري به فهم آن موفق شود، بنابر اين از اقليدس پرسيد: آيا امكان دارد قضايا را به نحو ساده تري بيان كرد؟ اقليدس به وي جواب داد: غير ممكن است، در هندسه راه مخصوص شاهانه وجود ندارد!وي به ماديات اهميت چنداني نمي داد.زماني كه شاگردي از وي پرسيد كه از هندسه چه نفعي مي بريم؟در پاسخ به وي رو به غلامي كرد و گفت كه به شاگردش يك اوبولوس بدهد زيرا كه وي مي خواهد از آنچه كه مي خواند بهره ببرد.وي بسيار متواضع و مهربان بود.در حدود 300 ق.م ،اقليدس مدرسه اي را در اسكندريه بنا مي كند كه به مركز مطالعات علمي يونان مبدل مي گردد. كتاب مقدمات اقليدس يا كتاب هندسه كه سه قرن قبل از ميلاد به نگارش در آمده، به زبان هاي مختلف دنيا ترجمه شده است و از آن زمان كه فن چاپ مرسوم شد تا به حال بيش از2000 بار چاپ گرديده است.زمانيكه اين كتاب منتشر شد، چنان نويسنده اش را مشهور كرد كه تا20 قرن بعد هرگونه تغيير در آن به معني توهين به مقدسات عالم محسوب مي شد. تامدتها مردم بر اين تصور بودند كه اصل موضوع هاي اقليدس هيچ گاه قابل تغيير نيست و تغيير در آن صورت نمي گيرد، اما دانشمندان برجسته اي چون ريمان لباچفسكي، علم رياضيات را توسعه دادند و هندسه هايي غيراقليدسي ارائه كردند.اقليدس نابغه برجسته اي بود كه ذوق سرشاري در زمينه تدوين داشت و اين مطلب را مي توان با مطالعه كتاب (نور) به خوبي متوجه شد.قرن پنجم شاهد اوج قدرت ادبي يونان، قرن چهارم شاهد شكوفايي فلسفه و قرن سوم شاهد تكامل علوم بود. سلاطين بيش از دموكراسيها نسبت به تحقيقات علمي گذشت و مساعدت روا ميداشتند. اسكندر كاروانهايي مركب از جدولهاي نجومي بابلي ...
هندسه اقلیدسی و نا اقلیدسی
هندسه اقلیدسی شاخه ای از ریاضیاتدر هندسه اقلیدسی یکسری مفاهیم اولیه نظیر خط و نقطه تعریف شده بود و پنچ اصل را به عنوان بدیهیات پذیرفته بودند و سایر قضایا را با استفاده از این اصول استنتاج می کردند. اما اصل پنجم چندان بدیهی به نظر نمی رسید. بنابر اصل پنجم اقلیدس از یک نقطه خارج از یک خط، یک خط و تنها یک خط می توان موازی با خط مفروض رسم کرد. برخی از ریاضیدانان مدعی بودند که این اصل را می توان به عنوان یک قضیه ثابت کرد. در این راه بسیاری از ریاضیدانان تلاش زیادی کردند و نتیجه نگرفتند. خیام ضمن جستجوی راهی برای اثبات "اصل توازی" مبتکر مفهوم عمیقی در هندسه شد. در تلاش برای اثبات این اصل، خیام گزاره هایی را بیان کرد که کاملا مطابق گزاره هایی بود که چند قرن بعد توسط والیس و ساکری ریاضیدانان اروپایی بیان شد و راه را برای ظهور هندسه های نااقلیدسی در قرن نوزدهم هموار کرد. سرانجام و پس از دو هزار سال اصولی متفاوت با آن بیان کردند و هندسه های نااقلیدسی شکل گرفت. بدین ترتیب علاوه بر فلسفه ی طبیعی ریاضیات نیز از انحصار یونانی خارج و در مسیری جدید قرار گرفت و آزاد اندیشی در ریاضیات آغاز گردید. اصطلاحات بنیادی ریاضیاتطی قرنهای متمادی ریاضیدانان اشیاء و موضوع های مورد مطلعه ی خود از قبیل نقطه و خط و عدد را همچون کمیت هایی در نظر می گرفتند که در نفس خویش وجود دارند. این موجودات همواره همه ی کوششهای را که برای تعریف و توصیف شایسته ی آنان انجام می شد را با شکست مواجه می ساختند. بتدریج این نکته بر ریاضیدانان قرن نوزدهم آشکار گردید که تعیین مفهوم این موجودات نمی تواند در داخل ریاضیات معنایی داشته باشد. حتی اگر اصولاً دارای معنایی باشند. بنابراین، اینکه اعداد، نقطه و خط در واقع چه هستند در علوم ریاضی نه قابل بحث است و نه احتیاجی به این بحث هست. براتراند راسل گفته بود که ریاضیات موضوعی است که در آن نه می دانیم از چه سخن می گوییم و نه می دانیم آنچه که می گوییم درست است. دلیل آن این است که برخی از اصطلاحات اولیه نظیر نقطه، خط و صفحه تعریف نشده اند و ممکن است به جای آنها اصطلاحات دیگری بگذاریم بی آنکه در درستی نتایج تاثیری داشته باشد. مثلاً می توانیم به جای آنکه بگوییم دو نقطه فقط یک خط را مشخص می کند، می توانیم بگوییم دو آلفا یک بتا را مشخص می کند. با وجود تغییری که در اصطلاحات دادیم، باز هم اثبات همه ی قضایای ما معتبر خواهد ماند، زیرا که دلیل های درست به شکل نمودار بسته نیستند، بلکه فقط به اصول موضوع که وضع شده اند و قواعد منطق بستگی دارند. بنابراین، ریاضیات تمرینی است کاملاً صوری برای استخراج برخی نتایج از بعضی مقدمات صوری. ...
تفاوت هندسه اقلیدسی و نا اقلیدسی
علومی که از یونان باستان توسط اندیشمندان اسلامی محافظت و همین طور تکمیل شد، از قرون یازدهم میلادی به بعد به اروپا منتقل شد، که این علوم بیشتر شامل ریاضی و فلسفه ی طبیعی می شد.فلسفه ی طبیعی توسط کوپرنیک، برونو، کپلر و گالیله به چالش کشیده شد و از آن میان فیزیک نیوتنی بیرون آمد. چون کلیسا خود را مدافع فلسفه طبیعی یونان می دانست و جستجو در آن با خطرات زیادی همراه بود، اندیشمندان با کنجکاوی بیشتر به ریاضیات می پرداختند، زیرا کلیسا نسبت به آنها حساسیت نشان نمی داد. بنابراین ریاضیات نسبت به فیزیک از پیشرفت بیشتری برخوردار بود. یکی از شاخه های مهم ریاضیات هندسه بود که آن هم در هندسه ی اقلیدسی خلاصه می شد.«نیکلای ایوانوویچ لوبا چفسکی» نخستین کسی بود که در سال 1829 مقاله ای در زمینه هندسه نا اقلیدسی منتشر ساخت.هنگامی که این اثر از او منتشر شد خیلی مورد توجه قرار نگرفت،و این موضوع به این علت بود که به زبان روسی نوشته شده بود و روس هایی که آن را می خواندند، سخت خرده گیری می کردند.او در سال 1840 مقاله ای به زبان آلمانی منتشر کرد که بسیار مورد توجه دانشمند معروف «گاوس» قرار گرفت.بنابراین در قرن نوزدهم دو ریاضیدان بزرگ به نام «لباچفسکى» و «ریمان» دو نظام هندسى را صورت بندى کردند که هندسه را از سیطره اقلیدس خارج مى کرد. صورت بندى «اقلیدس» از هندسه تا قرن نوزدهم با کاربرد ترین هندسه بود و پنداشته مى شد که نظام اقلیدس تنها نظامى است که امکان پذیر است.هندسه اقلیدسی مدلی برای ساختار نظریه های علمی بود و نیوتون و دیگر دانشمندان از آن پیروی می کردند.این نوع هندسه بر 5 اصل استوار می شود و بر 5 اصل اثبات می شود. اصل اول - از هر نقطه می توان خط مستقیمی به هر نقطه ی دیگر کشید. اصل دوم - هر پاره خط مستقیم را می توان روی همان خط به طور نامحدود امتداد داد. اصل سوم - می توان دایره ای با هر نقطه دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم کرد. اصل چهارم - همه ی زوایای قائمه با هم مساوی اند. اصل پنجم - از یک نقطه خارج یک خط، یک خط و و تنها یک خط می توان موازی با خط مفروض رسم کرد.هندسه «لباچفسکى» و هندسه «ریمانى» این اصل موضوعه پنجم را مورد تردید قرار دادند. در هندسه «ریمانى» ممکن است خط صافى که موازى خط مفروض باشد از نقطه مورد نظر عبور نکند و در هندسه «لباچفسکى» ممکن است بیش از یک خط از آن نقطه عبور کند. با اندکى تفکر و حساب مى توان گفت این دو هندسه منحنى وار هستند. بدین معنا که کوتاه ترین فاصله بین دو نقطه یک منحنى است.هندسه نا اقلیدسی چیست؟ هر هندسه ای غیر از اقلیدسی را نا اقلیدسی می گویند.این گونه هندسه ها تا به حال زیاد بوده است.تفاوت ...
هندسه ی اقلیدسی
هندسه ی اقلیدسی بر اساس پنچ اصل موضوع زیر شکل گرفت اصل اول - از هر نقطه می توان خط مستقیمی به هر نقطه ی دیگر کشید اصل دوم - هر پاره خط مستقیم را می توان روی همان خط به طور نامحدود امتداد داد اصل سوم - می توان دایره ای با هر نقطه دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم کرد اصل چهارم - همه ی زوایای قائمه با هم مساوی اند اصل پنجم - از یک نقطه خارج یک خط، یک خط و و تنها یک خط می توان موازی با خط مفروض رسم کرد. ایراد اصل پنجماصل پنجم که به اصل توازی معروف است ایجاز سایر اصول را نداشت،جون به هیچوجه واجد صفت بدیهی نبود. در واقع این اصل بیشتر به یک قضیه شباهت داشت تا به یک اصل. بنابراین طبیعی بود که لزوم واقعی آن به عنوان یک اصل مورد سئوال قرار گیرد. زیرا چنین تصور می شد که شاید بتوان آن را به عنوان یک قضیه نه اصل از سایر اصول استخراج کرد، یا حداقل به جای آن می توان معادل قابل قبول تری قرار داد در طول تاریخ ریاضیدانان بسیاری از جمله، خواجه نصیرالدین طوسی، جان والیس، لژاندر، فورکوش بویوئی و ... تلاش کردند اصل پنجم اقلیدس را با استفاده از سایر اصول نتیجه بگیرنر و آن را به عنوان یک قضیه اثبات کنند. اما تمام تلاشها بی نتیجه بود و در اثبات دچار خطا می شدند و به نوعی همین اصل را در اثباط خود به کار می بردند. دلامبر این وضع را افتضاح هندسه نامید یانوش بویوئی یکی از ریاضیدانان جوانی بود که در این را تلاش می کرد. پدر وی نیز ریاضیدانی بود که سالها در این این مسیر تلاش کرده بود و طی نامه ای به پسرش نوشت: تو دیگر نباید برای گام نهادن در راه توازی ها تلاش کنی، من پیچ و خم این راه را از اول تا آخر می شناسم. این شب بی پایان همه روشنایی و شادمانی زندگی مرا به کام نابودی فرو برده است، التماس می کنم دانش موازیها را رها کنی ولی یانوش جوان از اخطار پدر نهراسید، زیرا که اندیشه ی کاملاً تازه ای را در سر می پروراند. او فرض کرد نقیض اصل توازی اقلیدس، حکم بی معنی ای نیست. وی در سال 1823 پدرش را محرمانه در جریان کشف خود قرار داد و در سال 1831 اکتشافات خود را به صورت ضمیمه در کتاب تنتامن پدرش منتشر کرد و نسخه ای از آن را برای گاوس فرستاد. بعد معلوم شد که گائوس خود مستقلاً آن را کشف کرده است بعدها مشخص شد که لباچفسکی در سال 1829 کشفیات خود را در باره هندسه نااقلیدسی در بولتن کازان، دو سال قبل از بوئی منتشر کرده است. و بدین ترتیب کشف هندسه های نااقلیدسی به نام بویوئی و لباچفسکی ثبت گردید.
هندسه اقلیدسی
هندسهٔ اقلیدسی به مجموعهٔ گزارههایِ هندسیای اطلاق میشود که به بررسی موجودات ریاضیاتی مثل نقطه و خط میپردازد و بر پایههائی که اقلیدس ریاضیدان یونانی در کتاب خود بهنام اصول عرضه کرده، بنا شدهاست. این قضایایِ هندسی عمدتاً توسطِ یونانیانِ باستان کشف و توسطِ اقلیدسِ اسکندرانی گردآوری شدهاند و بخش بزرگی از آن همان است که در دبیرستانها تدریس میشود. کتابِ «اصولِ» اقلیدس یکی از بزرگترین و تأثیرگذارترین کتابها چه به لحاظِ محتوا و چه از نظرِ روشِ اصلِ موضوعهایاش بودهاست. تا قرن نوزدهم میلادی هر وقت از هندسه سخن میرفت منظور هندسه اقلیدسی بود. بررسی مفاهیم هندسه اقلیدسی در دو بعد را «هندسه مسطحه» و در سه بعد «هندسه فضائی» مینامند. این مفاهیم را به ابعاد بالاتر از سه نیز میتوان تعمیم داد و همچنان آن را هندسه اقلیدسی نامید.تمامِ هندسهٔ اقلیدسی (تمامِ قضیههایی که در دبیرستان میخوانیم، قضیهٔ فیثاغورس و غیره) میتوانند از پنج اصلِ موضوعهٔ زیر استخراج شوند:از هر دو نقطه یک خطِ راست میگذرد.هر پارهخط را میتوان تا بینهایت رویِ خطِ راست امتداد داد.با یک نقطه به عنوانِ مرکز و یک پارهخط به عنوانِ شعاع میتوان یک دایره رسم نمود.همهٔ زوایایِ قائمه با هم برابر اند.(این اصل معیاری طبیعی برای اندازهگیری زاویهها در اختیار میگذارد.)اگر یک خط دو خطِ دیگر را قطع کند، آن دو خط در طرفی که جمعِ زوایایِ داخلیِ تولید شده توسطِ خطِ مورب کمتر از دو قائمهاست به هم میرسند (خود یا امتدادشان).برایِ بیانِ این اصولِ موضوعه به مفاهیمی مانندِ نقطه و خط نیاز داریم. همانطور که باید چند گزاره را بدونِ اثبات بپذیریم تا بقیهٔ گزارهها استخراج شوند لازم است چند مفهوم را نیز بدونِ تعریف بپذیریم. به این مفاهیم «تعریفنشدهها» میگویند. همانطور که دیده میشود اصولِ هندسهٔ اقلیدسی به جز اصلِ پنجم بسیار ساده و بدیهی به نظر میآیند. به همیندلیل از زمانِ اقلیدس ریاضیدانانِ بیشماری در شرق و غرب (منجمله خیام ریاضیدانِ ایرانی) تلاش کردهاند اصلِ آزاردهندهٔ پنجم را به اثبات برسانند. این کار همواره شکست خوردهاست. سپس برخی ریاضیدانان تلاش نمودند خلافِ اصلِ پنجم را فرض کنند تا ببینند آیا هندسهای متناقض پدید میآید یا نه. از آنجا که هیچ تناقضی در هندسههایِ دارایِ اصلِ پنجمِ متفاوت دیده نشد به آنها نامِ هندسه نااقلیدسی را دادند. در نتیجه این مسأله مطرح گردید که تجربه کدام هندسه را تأیید میکند. نظریهٔ نسبیت عام به این پرسش پاسخ میدهد.دو مقدار مساوی بامقدار سوم ...
تفاوت هندسه اقلیدوسی با نااقلیدوسی!!!
اصول هندسه ی اقلیدسی بر اساس پنچ اصل موضوع زیر شکل گرفت اصل اول - از هر نقطه می توان خط مستقیمی به هر نقطه ی دیگر کشید اصل دوم - هر پاره خط مستقیم را می توان روی همان خط به طور نامحدود امتداد داد اصل سوم - می توان دایره ای با هر نقطه دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم کرد اصل چهارم - همه ی زوایای قائمه با هم مساوی اند اصل پنجم - از یک نقطه خارج یک خط، یک خط و و تنها یک خط می توان موازی با خط مفروض رسم کرد. ایراد اصل پنجم اصل پنجم که به اصل توازی معروف است ایجاز سایر اصول را نداشت،جون به هیچوجه واجد صفت بدیهی نبود. در واقع این اصل بیشتر به یک قضیه شباهت داشت تا به یک اصل. بنابراین طبیعی بود که لزوم واقعی آن به عنوان یک اصل مورد سئوال قرار گیرد. زیرا چنین تصور می شد که شاید بتوان آن را به عنوان یک قضیه نه اصل از سایر اصول استخراج کرد، یا حداقل به جای آن می توان معادل قابل قبول تری قرار داد در طول تاریخ ریاضیدانان بسیاری از جمله، خواجه نصیرالدین طوسی، جان والیس، لژاندر، فورکوش بویوئی و ... تلاش کردند اصل پنجم اقلیدس را با استفاده از سایر اصول نتیجه بگیرنر و آن را به عنوان یک قضیه اثبات کنند. اما تمام تلاشها بی نتیجه بود و در اثبات دچار خطا می شدند و به نوعی همین اصل را در اثباط خود به کار می بردند. دلامبر این وضع را افتضاح هندسه نامید یانوش بویوئی یکی از ریاضیدانان جوانی بود که در این را تلاش می کرد. پدر وی نیز ریاضیدانی بود که سالها در این این مسیر تلاش کرده بود و طی نامه ای به پسرش نوشت: تو دیگر نباید برای گام نهادن در راه توازی ها تلاش کنی، من پیچ و خم این راه را از اول تا آخر می شناسم. این شب بی پایان همه روشنایی و شادمانی زندگی مرا به کام نابودی فرو برده است، التماس می کنم دانش موازیها را رها کنی ولی یانوش جوان از اخطار پدر نهراسید، زیرا که اندیشه ی کاملاً تازه ای را در سر می پروراند. او فرض کرد نقیض اصل توازی اقلیدس، حکم بی معنی ای نیست. وی در سال 1823 پدرش را محرمانه در جریان کشف خود قرار داد و در سال 1831 اکتشافات خود را به صورت ضمیمه در کتاب تنتامن پدرش منتشر کرد و نسخه ای از آن را برای گاوس فرستاد. بعد معلوم شد که گائوس خود مستقلاً آن را کشف کرده است بعدها مشخص شد که لباچفسکی در سال 1829 کشفیات خود را در باره هندسه نااقلیدسی در بولتن کازان، دو سال قبل از بوئی منتشر کرده است. و بدین ترتیب کشف هندسه های نااقلیدسی به نام بویوئی و لباچفسکی ثبت گردید. هندسه نااقلیدسی : در قرن نوزدهم دو ریاضیدان بزرگ به نام «لباچفسکى» و «ریمان» دو نظام هندسى را صورت بندى کردند که هندسه را از سیطره اقلیدس خارج مى کرد. صورت ...
هندسه اقلیدسی
علومی که از یونان باستان توسط اندیشمندان اسلامی محافظت و تکمیل شد، از قرون یازدهم میلادی به بعد به اروپا منتقل شد، بیشتر شامل ریاضی و فلسفه ی طبیعی بود. فلسفه ی طبیعی توسط کوپرنیک، برونو، کپلر و گالیله به چالش کشیده شد و از آن میان فیزیکنیوتنی بیرون آمد. چون کلیسا خود را مدافع فلسفه طبیعی یونان می دانست و کنکاش در آن با خطرات زیادی همراه بود، اندیشمندان کنجکاو بیشتر به ریاضیات می پرداختند، زیرا کلیسا نسبت به آن حساسیت نشان نمی داد. بنابراین ریاضیات نسبت به فیزیک از پیشرفت بیشتری برخوردار بود. یکی از شاخه های مهم ریاضیات هندسه بود که آن هم در هندسه ی اقلیدسی خلاصه می شد. در هندسه ی اقلیدسی یکسری مفاهیم اولیه نظیر خط و نقطه تعریف میشود و پنچ اصل به عنوان بدیهیات آن پذیرفته میشود و سایر قضایا با استفاده از این اصول استنتاج میشوند. اصول هندسه ی اقلیدسی بر اساس پنچ اصل موضوع زیر شکل گرفت اصل اول - از هر نقطه می توان خط مستقیمی به هر نقطه ی دیگر کشید اصل دوم - هر پاره خط مستقیم را می توان روی همان خط به طور نامحدود امتداد داد اصل سوم - می توان دایره ای با هر نقطه دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم کرد اصل چهارم - همه ی زوایای قائمه با هم مساوی اند اصل پنجم - از یک نقطه خارج یک خط، یک خط و و تنها یک خط می توان موازی با خط مفروض رسم کرد. ایراد اصل پنجم اصل پنجم که به اصل توازی معروف است ایجاز سایر اصول را نداشت،جون به هیچوجه واجد صفت بدیهی نبود. در واقع این اصل بیشتر به یک قضیه شباهت داشت تا به یک اصل. بنابراین طبیعی بود که لزوم واقعی آن به عنوان یک اصل مورد سئوال قرار گیرد. زیرا چنین تصور می شد که شاید بتوان آن را به عنوان یک قضیه نه اصل از سایر اصول استخراج کرد، یا حداقل به جای آن می توان معادل قابل قبول تری قرار داد در طول تاریخ ریاضیدانان بسیاری از جمله، خواجه نصیرالدین طوسی، جان والیس، لژاندر، فورکوش بویوئی و ... تلاش کردند اصل پنجم اقلیدس را با استفاده از سایر اصول نتیجه بگیرنر و آن را به عنوان یک قضیه اثبات کنند. اما تمام تلاشها بی نتیجه بود و در اثبات دچار خطا می شدند و به نوعی همین اصل را در اثباط خود به کار می بردند. دلامبر این وضع را افتضاح هندسه نامید یانوش بویوئی یکی از ریاضیدانان جوانی بود که در این را تلاش می کرد. پدر وی نیز ریاضیدانی بود که سالها در این این مسیر تلاش کرده بود و طی نامه ای به پسرش نوشت: تو دیگر نباید برای گام نهادن در راه توازی ها تلاش کنی، من پیچ و خم این راه را از اول تا آخر می شناسم. این شب بی پایان همه روشنایی و شادمانی زندگی مرا به کام نابودی فرو برده است، التماس می ...