نظریه بازیها
تاریخچه
درسال ۱۹۲۱ یک ریاضیدان فرانسوی به نام امیل برل (Emile Borel) برای نخستین بار به مطالعهٔ تعدادی از بازیهای رایج در قمارخانهها پرداخت و تعدادی مقاله در مورد آنها نوشت. او در این مقالهها بر قابل پیشبینی بودن نتایج این نوع بازیها به طریق منطقی، تاکید کرده بود. اگرچه برل نخستین کسی بود که به طور جدی به موضوع بازیها پرداخت، به دلیل آن که تلاش پیگیری برای گسترش و توسعهٔ ایدههای خود انجام نداد، بسیاری از مورخین ایجاد نظریهٔ بازی را نه به او، بلکه به جان ون نویمن (John Von Neumann) ریاضیدان مجارستانی نسبت دادهاند. آن چه نویمن را به توسعهٔ نظریهٔ بازیها ترغیب کرد، توجه ویژهٔ او به یک بازی با ورق بود.او دریافته بود که نتیجهٔ این بازی صرفاً با تئوری احتمالات تعیین نمیشود. او شیوهٔ بلوف زدن در این بازی را فرمولبندی کرد. بلوف زدن در بازی به معنای راهکار فریب دادن سایر بازیکنان و پنهان کردن اطلاعات از آنهاست. در سال ۱۹۲۸ او به همراه اسکار مورگنسترن (Oskar Mongenstern) که اقتصاددانی اتریشی بود، کتاب تئوری بازیها و رفتار اقتصادی را به رشتهٔ تحریر در آوردند. اگر چه این کتاب صرفاً برای اقتصاددانان نوشته شده بود، کاربردهای آن در روانشناسی، جامعهشناسی، سیاست، جنگ، بازیهای تفریحی و بسیاری زمینههای دیگر به زودی آشکار شد. نویمن بر اساس راهبردهای موجود در یک بازی ویژه شبیه شطرنج توانست کنشهای میان دو کشور ایالات متحده و اتحاد جماهیر شوروی را در خلال جنگ سرد، با در نظر گرفتن آنها به عنوان دو بازیکن در یک بازی مجموع صفر مدلسازی کند. از آن پس پیشرفت این دانش با سرعت بیشتری در زمینههای مختلف پی گرفته شد و از جمله در دههٔ ۱۹۷۰ به طور چشمگیری در زیستشناسی برای توضیح پدیدههای زیستی به کار گرفته شد. در سال ۱۹۹۴ جان نش (John Nash) به همراه دو نفر دیگر به خاطر مطالعات خلاقانه خود در زمینهٔ تئوری بازیها برندهٔ جایزه نوبل اقتصاد شدند. در سالهای بعد نیز برندگان جایزهٔ نوبل اقتصاد عموماً از میان نظریهپردازان بازی انتخاب شدند.
کاربردها
نظریه بازیها در مطالعهٔ طیف گستردهای از موضوعات کاربرد دارد. این نظریه در ابتدا برای درک مجموعهٔ بزرگی از رفتارهای اقتصادی به عنوان مثال نوسانات شاخص سهام در بورس اوراق بهادار و افت و خیز بهای کالاها در بازار مصرفکنندگان ایجاد شد. تحلیل پدیدههای گوناگون اقتصادی و تجاری نظیر پیروزی در یک مزایده، معامله، داد و ستد، شرکت در یک مناقصه، از دیگر مواردی است که نظریه بازیها در آن نقش ایفا میکند. پژوهشها در این زمینه اغلب بر مجموعهای از راهبردهای شناخته شده به عنوان تعادل در بازیها استوار است. این راهبردها اصولاً از قواعد عقلانی به نتیجه میرسند. مشهورترین تعادلها، تعادل نش است. براساس نظریهٔ تعادل نش، اگر فرض کنیم در هر بازی با استراتژی مختلط بازیکنان به طریق منطقی و معقول راهبردهای خود را انتخاب کنند و به دنبال حد اکثر سود در بازی هستند، دست کم یک استراتژی برای به دست آوردن بهترین نتیجه برای هر بازیکن قابل انتخاب است و چنانچه بازیکن راهکار دیگری به غیر از آن را انتخاب کند، نتیجهٔ بهتری به دست نخواهد آورد. کاربرد نظریه بازیها در شاخههای مختلف علوم مرتبط با اجتماع از جمله سیاست (همانند تحلیلهای بروس بوئنو د مسکیتا)، جامعه شناسی، و حتی روان شناسی در حال گسترش است. در زیست شناسی هم برای درک پدیدههای متعدد، از جمله برای توضیح تکامل و ثبات و نیز برای تحلیل رفتار تنازع بقا و نزاع برای تصاحب قلمرو از نظریه بازیهااستفاده میشود. امروزه این نظریه کاربرد فزایندهای در منطق و دانش کامپیوتر دارد. دانشمندان این رشتهها از برخی بازیها برای مدلسازی محاسبات و نیز به عنوان پایهای نظری برای سیستمهای چندعاملی استفاده میکنند. هم چنین این نظریه نقش مهمی در مدلسازی الگوریتمهای بر خط (Online Algorithms) دارد. کاربردهای این نظریه تا آن جا پیش رفته است که در توصیف و تحلیل بسیاری از رفتارها در فلسفه و اخلاق ظاهر میشود.
انواع بازی
نظریه بازیها علی الاصول میتواند روند و نتیجهٔ هر نوع بازی از دوز(DUZ) گرفته تا بازی در بازار بورس سهام را توصیف و پیشبینی کند. تعدادی از ویژگیهایی که بازیهای مختلف بر اساس آنها طبقهبندی میشوند، در زیر آمدهاست.
متقارن - نامتقارن (Symmetric - Asymmetric)
بازی متقارن بازیای است که نتیجه و سود حاصل از یک را هبرد تنها به این وابسته است که چه راهبردهای دیگری در بازی پیش گرفته شود؛ و از این که کدام بازیکن این راهبرد را در پیش گرفته، مستقل است. به عبارت دیگر اگر مشخصات بازیکنان بدون تغییر در سود حاصل از به کارگیری راهبردها بتواند تغییر کند، این بازی متقارن است. بسیاری از بازیهایی که در یک جدول ۲*۲ قابل نمایش هستند، اصولاً متقارناند. بازی ترسوها و معمای نمونههایی از بازی متقارن هستند.
بازیهای نامتقارن اغلب بازیهایی هستند که مجموعهٔ راهبردهای یکسانی برای بازیکنان در بازی وجود ندارد. البته ممکن است راهبردهای یکسانی برای بازیکنان موجود باشد ولی آن بازی نامتقارن باشد.
مجموع صفر - مجموع غیر صفر(Zero Sum - Nonzero Sum)
بازیهای مجموع صفر بازیهایی هستند که ارزش بازی در طی بازی ثابت میماند و کاهش یا افزایش پیدا نمیکند. در این بازیها، سود یک بازیکن با زیان بازیکن دیگر همراه است. به عبارت سادهتر یک بازی مجموع صفر یک بازی برد-باخت مانند دوز است و به ازای هر برنده همواره یک بازنده وجود دارد. اما در بازیهای مجموع غیر صفر راهبردهایی موجود است که برای همهٔ بازیکنان سودمند است.
تصادفی - غیر تصادفی (Random - Nonrandom)
بازیهای تصادفی شامل عناصر تصادفی مانند ریختن تاس یا توزیع ورق هستند و بازیهای غیر تصادفی بازیهایی هستند که دارای راهبردهایی صرفاً منطقی هستند. در این مورد میتوان شطرنج و دوز را مثال زد.
با آگاهی کامل – بدون آگاهی کامل (Perfect Knowledge – Non-Perfect Knowledge)
بازیهای با آگاهی کامل، بازیهایی هستند که تمام بازیکنان میتوانند در هر لحظه تمام ترکیب بازی را در مقابل خود مشاهده کنند، مانند شطرنج. از سوی دیگر در بازیهای بدون آگاهی کامل ظاهر و ترکیب کل بازی برای بازیکنان پوشیدهاست، مانند بازیهایی که با ورق انجام میشود.
نمونههایی از بازیها
بازی ترسوها (Chicken Game)
دو نوجوان در اتومبیلهایشان با سرعت به طرف یکدیگر میرانند، بازنده کسی است که اول فرمان اتومبیلش را بچرخاند و از جاده منحرف شود. بنابراین:اگر یکی بترسد و منحرف شود دیگری میبرد؛اگر هر دو منحرف شوند هیچکس نمیبرد اما هر دو باقی میمانند؛اگر هیچکدام منحرف نشوند هر دو ماشینهایشان ( وحتا احتمالاً زندگیشان را!) میبازند؛ اگر شما یکی از این نوجوانها باشید چه میکنید؟
معمای زندانی(Prisoner’s delimma)
دو نفر متهم به شرکت در یک سرقت مسلحانه، در جریان یک درگیری دستگیر شدهاند و هر دو جداگانه مورد بازجویی قرار میگیرند. در طی این بازجویی با هریک از آنها جداگانه به این صورت معامله میشود: اگر دوستت را لو بدهی تو آزاد میشوی ولی او به پنج سال حبس محکوم خواهد شد. اگر هر دو یکدیگر را لو بدهید، هر دو به سه سال حبس محکوم خواهید شد.اگر هیچکدام همدیگر را لو ندهید، هر دو یکسال در یک مرکز بازپروری خدمت خواهید کرد.
اگر شما یکی از این زندانیها بودید چه میکردید؟ کمی دقت کنید چه قدر از اتفاقاتی که در عرصهٔ سیاست، اقتصاد، مدیریت و... اتفاق میافتد بااین دو بازی مشهور متناظر و قابل توضیح است؟
منابع
عبدلی، قهرمان(۱۳۸۶). نظریه بازیها و کاربردهای آن. انتشارات: جهاد دانشگاهی دانشگاه تهران.
Robert Gibbons(۱۹۹۲). A Primer in Game Theory. Prentice hall,
Edt. Christian Schmidt(۲۰۰۲). Game Theory and Economic Analysis.Taylor & Francis Groupبرگرفته از ویکیپدیا
مطالب مشابه :
نظریه بازیها
نظریه بازیها . از ویکیپدیا، دانشنامهٔ آزاد کلاس درس برخطی مربوط به موضوع این مقاله در
نظریه بازی ها (1)
نظریه بازی (به انگلیسی: Game Theory) شاخهای از ریاضیات کاربردی است که در علوم اجتماعی و به ویژه
نظریه بازی ها
نظریه بازی ها (Game Theory) حوزه ای از ریاضیات کاربردی است که در بستر علم اقتصاد توسعه یافته و به
نظریه بازی¬ها
نظریه بازیها، یک تکنیک ریاضی است که یک حداقل برد (یا حداکثر باخت) در یک وضعیت برخوردی را
نظریه بازیها Game Theory
نظریه بازیها Game Theory. نظریه بازیها (به انگلیسی: Game Theory) شاخهای از ریاضیات کاربردی است که
نظریه بازیها
مدیریت آموزشی - نظریه بازیها - ارائه مقالات علمی و تخصصی در زمینه مدیریت در آموزش
نظریه بازیها یا نظریه هماوردی
مطالعات اقتصادی و حقوقی - نظریه بازیها یا نظریه هماوردی - اقتصاد، مدیریت، پول و ارز و
نظریه بازیها
نویسنده: فاطمه خاوری. نظریه بازیها (Game Theory) حوزهای از ریاضیات کاربردی است که در بستر علم
برچسب :
نظریه بازی ها