همه چیز درمورد منطق فازی



هنگامی که در سال 1965 پروفسور لطفی‌زاده، استاد ایرانی‌ دانشگاه برکلی، اولین مقاله خود را در زمینه فازی تحت عنوان مجموعه‌های فازی (FUZZY TEST) منتشر کرد، هیچ کس باور نداشت که این جرقه‌ای خواهد بود که دنیای ریاضیات را به طور کلی تغییر دهد

گرچه در دهه 1970 و اوایل دهه 1980 مخالفان جدی برای نظریه فازی وجود داشت، اما امروزه هیچ کس نمی‌تواند ارزش‌های منطق فازی و کنترل‌های فازی را منکر شود.
افتخار هر ایرانی است که پایه علوم قرن آینده از نظریات یک ایرانی می‌باشد؛ باید قدر این فرصت را دانست و در تعمیم نظریه فازی و استفاده از آن کوشش و تلاش کرد.
زمینه‌های پژوهش و تحقیق در نظریه فازی بسیار گسترده می‌باشد؛ پژوهشگران علاقه‌مند می‌توانند با پژوهش و تحقیق در این زمینه باعث رشد و شکوفایی هرچه بیشتر نظریه فازی شوند.
در این مقاله سعی شده است که خوانندگان محترم با نظریه فازی و تاریخچه آن آشنا شوند و زمینه‌های تحقیق و پژوهش مورد بررسی قرار گیرد.
زمانی که در سال 1965 پروفسور لطفی‌زاده، استاد ایرانی‌الاصل دانشگاه برکلی، اولین مقاله خود را در زمینه فازی تحت عنوان مجموعه‌های فازی (FUZZY TEST) منتشر کرد، هیچ کس باور نداشت که این جرقه‌ای خواهد بود که دنیای ریاضیات را به طور کلی تغییر دهد.
گرچه در دهه 1970 و اوایل دهه 1980 مخالفان جدی برای نظریه فازی وجود داشت، اما امروزه هیچ کس نمی‌تواند ارزش‌های منطق فازی و کنترل‌های فازی را منکر شود.
افتخار هر ایرانی است که پایه علوم قرن آینده از نظریات یک ایرانی می‌باشد؛ باید قدر این فرصت را دانست و در تعمیم نظریه فازی و استفاده از آن کوشش و تلاش کرد.
زمینه‌های پژوهش و تحقیق در نظریه فازی بسیار گسترده می‌باشد؛ پژوهشگران علاقه‌مند می‌توانند با پژوهش و تحقیق در این زمینه باعث رشد و شکوفایی هرچه بیشتر نظریه فازی شوند.
در این مقاله سعی شده است که خوانندگان محترم با نظریه فازی و تاریخچه آن آشنا شوند و زمینه‌های تحقیق و پژوهش مورد بررسی قرار گیرد.
امید است که بتوان قدمی هر چند کوچک در جهت تعالی کشور عزیزمان ایران برداریم
تاریخچة مجموعه‌های فاز
نظریة مجموعه فازی در سال 1965 توسط پروفسور لطفی عسگرزاده، دانشمند ایرانی‌تبار و استاد دانشگاه برکلی امریکا عرضه شد.
اگر بخواهیم نظریه مجموعه‌های فازی را توضیح دهیم، باید بگوییم نظریه‌ای است برای اقدام در شرایط عدم اطمینان؛ این نظریه قادر است بسیاری از مفاهیم و متغیرها و سیستم‌هایی را که نادقیق و مبهم هستند، صورت‌بندی ریاضی ببخشد و زمینه را برای استدلال، استنتاج، کنترل و تصمیم‌گیری در شرایط عدم اطمینان فراهم آورد.
پرواضح است که بسیاری از تصمیمات و اقدامات ما در شرایط عدم اطمینان است و حالت‌های واضح غیر مبهم، بسیار نادر و کمیاب‌ می‌باشند.
نظریة مجموعه‌های فازی به شاخه‌های مختلفی تقسیم شده است که بحث کامل و جامع در مورد هر شاخه، به زمان بیشتر و مباحث طولانی‌تری احتیاج دارد.
در این مبحث که با انواع شاخه‌های فازی و کاربرد آنها آشنا می‌شویم، تلاش شده است که مباحث به صورت ساده ارائه شود و مسائل بدون پیچیدگی‌های خاص مورد بررسی قرار گیرد.
همچنین تلاش شده است که جنبه‌های نظری هر بحث تا حد امکان روشن شود؛ گرچه در بسیاری موارد به منظور اختصار، از بیان برهان‌ها چشمپوشی شده است و علاقه‌مندان را به منابع ارجاع داده‌ایم. مطالعه این پژوهش می‌تواند زمینه‌ای کلی و فراگیر دربارة اهم شاخه‌های نظریه مجموعه‌های فازی فراهم ‌آورد؛ اما علاقه‌مندان می‌توانند با توجه به نوع و میزان علاقه و هدف خود، به مراجع اعلام شده، مراجعه نمایند.

تاریخچة مختصری از نظریه و کاربردهای فازی دهه 1960 آغاز نظریه فازی
نظریه فازی به وسیله پروفسور لطفی‌زاده در سال 1965 در مقاله‌ای به نام مجموعه‌های فازی معرفی شد.
ایشان قبل از کار بر روی نظریه فازی، یک استاد برجسته در نظریه کنترل بود. او مفهوم «حالت» را که اساس نظریه کنترل مدرن را شکل می‌دهد، توسعه داد.
عسگرزاده در سال 1962 چیزی را بدین مضمون برای سیستم‌های بیولوژیک نوشت: ما اساساً به نوع جدید ریاضیات نیازمندیم؛ ریاضیات مقادیر مبهم یا فازی که توسط توزیع‌های احتمالات قابل توصیف نیستند.
وی فعالیت خویش در نظریه فازی را در مقاله‌ای با عنوان «مجموعه‌های فازی» تجسم بخشید.
مباحث بسیاری در مورد مجموعه‌های فازی به وجود آمد و ریاضیدانان معتقد بودند نظریه احتمالات برای حل مسائلی که نظریه فازی ادعای حل بهتر آن را دارد، کفایت می‌کند.
دهة 1960 دهة چالش کشیدن و انکار نظریه فازی بود و هیچ یک از مراکز تحقیقاتی، نظریه فازی را به عنوان یک زمینه تحقیق جدی نگرفتند.
اما در دهة 1970، به کاربردهای عملی نظریه فازی توجه شد و دیدگاه‌های شک‌برانگیز درباره ماهیت وجودی نظریه فازی مرتفع شد.
استاد لطفی‌زاده پس از معرفی مجموعة فازی در سال 1965، مفاهیم الگوریتم فازی را در سال 1968، تصمیم‌گیری فازی را در سال 1970 و ترتیب فازی را در سال 1971 ارائه نمود. ایشان در سال 1973 اساس کار کنترل فازی را بنا کرد.
این مبحث باعث تولد کنترل‌کننده‌های فازی برای سیستم‌های واقعی بود؛ ممدانی (Mamdani) و آسیلیان (Assilian) چهارچوب اولیه‌ای را برای کنترل‌کننده فازی مشخص کردند. در سال 1978 هومبلاد (Holmblad) و اوسترگارد(Ostergaard) اولین کنترل‌کننده فازی را برای کنترل یک فرایند صنعتی به کار بردند که از این تاریخ، با کاربرد نظریه فازی در سیستم‌های واقعی، دیدگاه شک‌برانگیز درباره ماهیت وجودی این نظریه کاملاً متزلزل شد.
دهة 1980 از لحاظ نظری، پیشرفت کندی داشت؛ اما کاربرد کنترل فازی باعث دوام نظریه فازی شد.
مهندسان ژاپنی به سرعت دریافتند که کنترل‌کننده‌های فازی به سهولت قابل طراحی بوده و در مورد بسیاری مسائل می‌توان از آنها استفاده کرد.
به علت اینکه کنترل فازی به یک مدل ریاضی نیاز ندارد، می‌توان آن را در مورد بسیاری از سیستم‌هایی که به وسیلة نظریه کنترل متعارف قابل پیاده‌سازی نیستند، به کار برد.
سوگنو مشغول کار بر روی ربات فازی شد، ماشینی که از راه دور کنترل می‌شد و خودش به تنهایی عمل پارک را انجام می‌داد.
یاشونوبو (Yasunobu) و میاموتو (Miyamoto) از شرکت هیتاچی کار روی سیستم کنترل قطار زیرزمینی سندایی را آغاز کردند. بالاخره در سال 1987 پروژه به ثمر نشست و یکی از پیشرفته‌ترین سیستم‌های قطار زیرزمینی را در جهان به وجود آورد.
در دومین کنفرانس‌ سیستم‌های فازی که در توکیو برگزار شد، درست سه روز بعد از افتتاح قطار زیرزمینی سندایی، هیروتا (Hirota) یک روبات فازی را به نمایش گذارد که پینگ‌پونگ بازی می‌کرد؛ یاماکاوا (Yamakawa) نیز سیستم فازی را نشان داد که یک پاندول معکوس را در حالت تعادل نشان می‌داد. پس از این کنفرانس، توجه مهندسان، دولتمردان و تجار جلب شد و زمینه‌های پیشرفت نظریه فازی فراهم شد.
دهة 1990 ، توجه محققان امریکا و اروپا به سیستم‌های فازی
موفقیت سیستم‌های فازی در ژاپن، مورد توجه محققان امریکا و اروپا واقع شدن و دیدگاه بسیاری از محققان به سیستم‌های فازی تغییر کرد.
در سال 1992 اولین کنفرانس بین‌المللی در مورد سیستم‌های فازی به وسیله بزرگترین سازمان مهندسی یعنی IEEE برگزار شد.
در دهة 1990 پیشرفت‌های زیادی در زمینة سیستم‌های فازی ایجاد شد؛ اما با وجود شفاف شدن تصویر سیستم‌های فازی، هنوز فعالیت‌های بسیاری باید انجام شود و بسیاری از راه‌حل‌ها و روش‌ها همچنان در ابتدای راه قرار دارد. بنابراین توصیه می‌شود که محققان کشور با تحقیق و تفحص در این زمینه، موجبات پیشرفت‌های عمده در زمینة نظریه فازی را فراهم نمایند.
زندگینامة پروفسور لطفی‌زاده
استاد لطفی‌زاده در سال 1921 در باکو متولد شد. آنجا مرکز آذربایجان شوروی بود. لطفی‌زاده یک شهروند ایرانی بود؛ پدرش یک تاجر و نیز خبرنگار روزنامة ایرانیان بود.
استاد لطفی‌زاده از 10 تا 23 سالگی در ایران زندگی کرد و به مدرسة مذهبی رفت. خاندان لطفی‌زاده از اشراف و ثروتمندان ایرانی بودند که همیشه ماشین و خدمتکار شخصی داشتند.
در سال 1942 با درجة کارشناسی مهندسی برق از دانشکده فنی دانشگاه تهران فارغ‌التحصیل شد. او در سال 1944 وارد امریکا شد و به دانشگاه MIT رفت و در سال 1946 درجة کارشناسی‌ارشد را در مهندسی برق دریافت کرد. در سال 1951 درجة دکترای خود را در رشتة مهندسی برق دریافت نمود و به استادان دانشگاه کلمبیا ملحق شد. سپس به دانشگاه برکلی رفته و در سال 1963 ریاست دپارتمان مهندسی برق دانشگاه برکلی را که بالاترین عنوان در رشتة مهندسی برق است، کسب نمود. لطفی‌زاده انسانی است که همیشه موارد مخالف را مورد بررسی قرار داده و به بحث دربارة آن می‌پردازد. این خصوصیت، قابلیت پیروزی بر مشکلات را به لطفی‌زاده اعطا نموده است.
در سال 1956 لطفی‌زاده بررسی منطق چند ارزشی و ارائة مقالات تخصصی در مورد این منطق را آغاز کرد.
پروفسور لطفی‌زاده از طریق مؤسسة پرینستون با استفن کلین آشنا شد. استفن کلین کسی است که از طرف مؤسسة پرینستون، منطق چند ارزشی را در ایالات متحده رهبری می‌کرد. کلین متفکر جوان ایرانی را زیر بال و پر خود گرفت. آنها هیچ مقاله‌ای با یکدیگر ننوشتند، اما تحت تأثیر یکدیگر قرار داشتند.
لطفی‌زاده اصول منطق و ریاضی منطق چند ارزشی را فرا گرفت و به کلین اساس مهندسی برق و نظریة اطلاعات را آموخت.
وی پس از آشنایی با پرینستون، شیفتة منطق چند ارزشی شد.
در سال 1962 لطفی‌زاده تغییرات مهم و اصلی را در مقالة «از نظریة مدار به نظریة سیستم» در مجلة IRE که یکی از بهترین مجله‌های مهندسی آن روز بود، منتشر ساخت. در اینجا برای اولین بار عبارت فازی را برای چند ارزشی پیشنهاد داد.
لطفی‌زاده پس از ارائة منطق فازی، در تمام دهة 1970 و دهة 1980 به منتقدان خود در مورد این منطق پاسخ می‌داد. متانت، حوصله و صبوری استاد در برخورد با انتقادات و منتقدان منطق فازی از خود بروز می‌داد، در رشد و نمو منطق فازی بسیار مؤثر بوده است، به طوری که رشد کاربردهای کنترل فازی و منطق فازی در سیستم‌های کنترل را مدیون تلاش و کوشش پروفسور لطفی‌زاده می‌دانند و هرگز جهانیان تلاش این بزرگ‌مرد اسطوره‌ای ایرانی را فراموش نخواهند کرد.
تعریف سیستم‌های فازی و انواع آن
واژة فازی در فرهنگ  آکسفورد به صورت مبهم، گنگ و نادقیق تعریف شده است. اگر بخواهیم نظریة مجموعه‌های فازی را تعریف کنیم، باید بگوییم که نظریه‌ای است برای اقدام در شرایط عدم اطمینان؛ این نظریه قادر است بسیاری از مفاهیم و متغیر‌ها و سیستم‌هایی را که نادقیق هستند، صورت‌بندی ریاضی ببخشد و زمینه را برای استدلال، استنتاج، کنترل و تصمیم‌گیری در شرایط عدم اطمینان فراهم آورد.

چرا سیستم‌های فازی:
دنیای واقعی ما بسیار پیچیده‌تر از آن است که بتوان یک توصیف و تعریف دقیق برای آن به دست آورد؛ بنابراین باید برای یک مدل، توصیف تقریبی یا همان فازی که قابل قبول و قابل تجزیه و تحلیل باشد معرفی شود.
با حرکت به سوی عصر اطلاعات، دانش و معرفت بشری بسیار اهمیت پیدا می‌کند. بنابراین ما به فرضیه‌ای نیاز داریم که بتواند دانش بشری را به شکلی سیستماتیک فرموله کرده و آن را به همراه سایر مدل‌های ریاضی در سیستم‌های مهندسی قرار دهد
سیستم‌های فازی چگونه سیستم‌هایی هستند؟
سیستم‌های فازی، سیستم‌های مبتنی بر دانش یا قواعد می‌باشند؛ قلب یک سیستم فازی یک پایگاه دانش است که از قواعد اگر ـ آنگاه فازی تشکیل شده است.
یک قاعده اگر ـ آنگاه فازی، یک عبارت اگر ـ آنگاه است که بعضی کلمات آن به وسیله توابع تعلق پیوسته مشخص شده‌اند.
مثال:
اگر سرعت خودرو بالاست، آنگاه نیروی کمتری به پدال گاز وارد کنید.
کلمات «بالا» و «کم» به وسیله توابع تعلق مشخص شده‌اند؛ توضیحات کامل در شکل ارائه شده است.
مثال 1-1:
فرض کنید می‌خواهیم کنترل‌کنند‌ه‌ای طراحی کنیم که سرعت خودرو را به طور خودکار کنترل کند. راه‌حل این است که رفتار رانندگان را شبیه‌سازی کنیم؛ بدین معنی که قواعدی را که راننده در حین حرکت استفاده می‌کند، به کنترل‌کنندة خودکار تبدیل نماییم.
در صحبت‌های عامیانه راننده‌ها در شرایط طبیعی از 3 قاعده زیر در حین رانندگی استفاده می‌کنند:
اگر سرعت پایین است، آنگاه نیروی بیشتری به پدال گاز وارد کنید.
اگر سرعت متوسط است، آنگاه نیروی متعادلی به پدال گاز وارد کنید.
اگر سرعت بالاست، آنگاه نیروی کمتری به پدال گاز وارد کنید.
به طور خلاصه، نقطة شروع ساخت یک سیستم فازی به دست آوردن مجموعه‌ای از قواعد اگر ـ آنگاه فازی از دانش افراد خبره یا دانش حوزه مورد بررسی می‌باشد؛ مرحلة بعدی، ترکیب این قواعد در یک سیستم واحد است.
انواع سیستم‌های فازی
سیستم‌های فازی خالص
سیستم‌های فازی تاکاگی ـ سوگنوکانگ (TSK)
سیستم‌های با فازی‌ساز و غیر فازی‌ساز
سیستم فازی خالص
موتور استنتاج فازی، این قواعد را به یک نگاشت از مجموعه‌های فازی در فضای ورودی به مجموعه‌های فازی و در فضای خروجی بر اساس اصول منطق فازی ترکیب می‌کند.
مشکل اصلی در رابطه با سیستم‌های فازی خالص این است که ورودی‌ها و خروجی‌های آن مجموعه‌های فازی می‌باشند. درحالی که در سیستم‌های مهندسی، ورودی‌ها و خروجی‌ها متغیرهایی با مقادیر حقیقی می‌باشند.
برای حل این مشکل، تاکاگی سوگنو و کانگ، نوع دیگری از سیستم‌های فازی معرفی کرده‌اند که ورودی‌ها و خروجی‌های آن متغیرهایی با مقادیر واقعی هستند.
سیستم فازی تاکاگی ـ سوگنو و کانگ
بدین ترتیب قاعده فازی از یک عبارت توصیفی با مقادیر زبانی، به یک رابطة ساده تبدیل شده است؛ به طور مثال در مورد خودرو می‌توان اعلام کرد که اگر سرعت خودرو X باشد، آنگاه نیروی وارد بر پدال گاز برابر Y=CX می‌باشد.
مشکلات عمدة سیستم فازی TSK عبارت است از:
بخش «آنگاه» قاعدة یک فرمول ریاضی بوده و بنابراین چهارچوبی را برای نمایش دانش بشری فراهم نمی‌کند.
این سیستم دست ما را برای اعمال اصول مختلف منطق فازی باز نمی‌گذارد و در نتیجه انعطاف‌پذیری سیستم‌های فازی در این ساختار وجود ندارد.
برای حل این مشکلات نوع سومی از سیستم‌های فازی یعنی سیستم فازی با فازی‌سازها و غیر فازی‌سازها مورد استفاده قرار گرفت.
سیستم‌های فازی با فازی‌ساز و غیر فازی ساز
این سیستم فازی معایب سیستم فازی خالص و سیستم فازی TSK را می‌پوشاند. در این مبحث، از این پس سیستم فازی با فازی ساز و غیر فازی‌ساز منظور خواهد بود.
به عنوان نتیجه‌گیری برای این بخش لازم است یادآوری شود که جنبة متمم نظریه سیستم‌های فازی این است که یک فرایند سیستماتیک را برای تبدیل یک پایگاه دانش به یک نگاشت غیر فعلی فراهم می‌سازد.
زمینه‌های تحقیق عمده در نظریه فازی
منظور از نظریه فازی، تمام نظریه‌هایی است که از مفاهیم اساسی مجموعه‌های فازی یا توابع تعلق استفاده می‌کنند.
مطابق شکل، نظریه فازی را می‌توان به پنج شاخة عمده تقسیم کرد که عبارتند از:
ریاضیات فازی
مفاهیم ریاضیات کلاسیک، با جایگزینی مجموعه‌های فازی با مجموعه‌های کلاسیک توسعه پیدا کرده است.
منطق فازی و هوش مصنوعی
که در آن منطق کلاسیک تقریب‌هایی یافته و سیستم‌های خبره بر اساس اطلاعات و استنتاج تقریبی توسعه پیدا کرده است.
سیستم‌های فازی
سیستم‌های فازی که شامل کنترل فازی و راه‌حل‌هایی در زمینة پردازش سیگنال و مخابرات می‌باشد.
عدم قطعیت و اطلاعات
انواع عدم قطعیت‌ها را مورد تجزیه و تحلیل قرار می‌دهد.
تصمیم‌گیری فازی
مسائل بهینه‌سازی را با محدودیت‌ها در نظر می‌گیرد.

كجا اتومبيل خود را پارك مي‌كنيد؟
تصور كنيد يك روز مطلع مي‌شويد، نمايشگاه پوشاكي در گوشه‌اي از شهر برپا شده است و تصميم مي‌گيريد، يك روز عصر به اتفاق خانواده سري به اين نمايشگاه بزنيد. چون محل نمايشگاه كمي دور است، از اتومبيل استفاده مي‌كنيد، اما وقتي به محل نمايشگاه مي‌رسيد، متوجه مي‌شويد كه عده زيادي به آنجا آمده‌اند و پاركينگ نمايشگاه تا چشم كار مي‌كند، پر شده است.
 
اما چون حوصله صرف وقت براي پيدا كردن محل ديگري جهت پارك اتومبيل نداريد، با خود مي‌گوييد: <هر طور شده بايد جاي پاركي در اين پاركينگ پيدا كنم.> سرانجام در گوشه‌اي از اين پاركينگ محلي را پيدا مي‌كنيد كه يك ماشين به طور كامل در آن جا نمي‌شود، اما با كمي اغماض مي‌شود يك ماشين را در آن جاي داد، هرچند كه اين ريسك وجود دارد كه فضاي عبور و مرور ديگر خودروها را تنگ كنيد و آن‌ها هنگام حركت به خودرو شما آسيب برسانند. اما به هرحال تصميم مي‌گيريد و ماشين خود را پارك مي‌كنيد.

بسيارخوب! اكنون بياييد بررسي كنيم شما دقيقاً چه كار كرديد؟ شما دنبال جاي توقف يك اتومبيل مي‌گشتيد. آيا پيدا كرديد؟ هم بله، هم نه. شما در ابتدا مي‌خواستيد ماشين را در جاي مناسبي پارك كنيد. آيا چنين عملي انجام داديد؟ از يك نظر بله، از يك ديدگاه نه. در مقايسه با وقت و انرژي لازم براي پيدا كردن يك مكان راحت براي توقف خودرو، شما جاي مناسبي پيدا كرديد. چون ممكن بود تا شب دنبال جا بگرديد و چنين جايي را پيدا نكنيد. اما از اين نظر كه اتومبيل را در جايي پارك كرديد كه فضاي كافي براي قرارگرفتن ماشين شما نداشت، نمي‌توان گفت جاي مناسبي است.

اگر به منطق كلاسيك در علم رياضيات مراجعه كنيم و اين پرسش را مطرح نماييم كه قبل از ورود به پاركينگ چند درصد احتمال مي‌داديد جايي براي پارك‌كردن پيدا كنيد، پاسخ بستگي به اين دارد كه واقعاً چه تعداد مكان مناسب (فضاي كافي) براي توقف خودروها در آنجا وجود داشت؟ اگر به حافظه خود رجوع كنيد، شايد به ياد بياوريد كه هنگام ورود به پاركينگ و چرخيدن در قسمت‌هاي مختلف آن، گاهي خودروهايي را مي‌ديديد كه طوري پارك كرده‌اند كه مكان يك و نيم خودرو را اشغال كرده‌اند. بعضي ديگر نيز كج و معوج پارك كرده بودند و اين فكر از ذهن شما چندبار گذشت كه اگر صاحب بعضي از اين خودروها درست پارك ‌كرده بودند، الان جاي خالي براي پارك كردن چندين ماشين ديگر هم وجود داشت.

به اين ترتيب علم رياضيات و آمار و احتمال در مواجهه با چنين شرايطي قادر به پاسخگويي نيست. اگر قرار بود بر اساس منطق صفر و يك يا باينري كامپيوتر، روباتي ساخته شود تا اتوميبل شما را در يك مكان مناسب پارك‌ كند، احتمالش كم بود. چنين روباتي به احتمال زياد ناكام از پاركينگ خارج مي‌شد. پس شما با چه منطقي توانستيد اتومبيل خود را پارك‌ كنيد؟ شما از منطق فازي استفاده كرديد.

دنياي فازي‌
مي‌پرسیم <هوا ابري است يا آفتابي؟> پاسخ مي‌دهي: نيمه‌ابري. مي‌پرسم <آيا همه آنچه كه ديروز به من گفتي، راست بود؟> پاسخ مي‌دهي: بيشتر آن حقيقت داشت. ما در زندگي روزمره بارها از منطق فازي استفاده مي‌كنيم. واقعيت اين است كه دنياي صفر و يك، دنيايي انتزاعي و خيالي است. به ندرت پيش مي‌آيد موضوعي صددرصد درست يا صددرصد نادرست باشد؛ زيرا در دنياي واقعي در بسياري از مواقع، همه‌چيز منظم و مرتب سرجايش نيست.

از نخستين روز تولد انديشه فازي، بيش از چهل سال مي‌گذرد. در اين مدت نظريه فازي، چارچوب فكري و علمي جديدي را در محافل آكادميك و مهندسي معرفي  نموده و ديدگاه دانشمندان را نسبت به كمّ و كيف دنياي اطراف ما تغيير داده است. منطق فازي جهان‌بيني بديع و واقع‌گرايانه‌اي است كه به اصلاح شالوده ‌منطق علمي و ذهني بشر كمك شاياني كرده‌است.

پيشينه منطق فازي  
تئوري مجموعه‌هاي فازي و منطق فازي را اولين بار پرفسور لطفي‌زاده (2) در رساله‌اي به نام <مجموعه‌هاي فازي - اطلاعات و كنترل> در سال 1965 معرفي نمود. هدف اوليه او در آن زمان، توسعه مدلي كارآمدتر براي توصيف فرآيند پردازش زبان‌هاي طبيعي بود. او مفاهيم و اصلاحاتي همچون مجموعه‌هاي فازي، رويدادهاي فازي، اعداد فازي و فازي‌سازي را وارد علوم رياضيات و مهندسي نمود. از آن زمان تاكنون، پرفسور لطفي زاده به دليل معرفي نظريه بديع و سودمند منطق فازي و تلاش‌هايش در اين زمينه، موفق به كسب جوايز بين‌المللي متعددي شده است.
پس از معرفي منطق فازي به دنياي علم، در ابتدا مقاومت‌هاي بسياري دربرابر پذيرش اين نظريه صورت گرفت.

بخشي از اين مقاومت‌ها، چنان كه ذكر شد، ناشي از برداشت‌هاي نادرست از منطق فازي و كارايي آن بود. جالب اين‌كه، منطق فازي در سال‌هاي نخست تولدش بيشتر در دنياي مشرق زمين، به‌ويژه كشور ژاپن با استقبال روبه‌رو شد، اما استيلاي انديشه كلاسيك صفر و يك در كشورهاي مغرب زمين، اجازه رشد اندكي به اين نظريه داد. با اين حال به تدريج كه اين علم كاربردهايي پيدا كرد و وسايل الكترونيكي و ديجيتالي جديدي وارد بازار شدند كه بر اساس منطق فازي كارمي‌كردند، مخالفت‌ها نيز اندك اندك كاهش يافتند.

در ژاپن استقبال از منطق فازي، عمدتاً به كاربرد آن در روباتيك و هوش مصنوعي مربوط مي‌شود. موضوعي كه يكي از نيروهاي اصلي پيش‌برندهِ اين علم طي چهل سال گذشته بوده است. در حقيقت مي‌توان گفت بخش بزرگي از تاريخچه دانش هوش مصنوعي، با تاريخچه منطق فازي همراه و هم‌داستان است.

مجموعه‌هاي فازي‌
بنياد منطق فازي بر شالوده نظريه مجموعه‌هاي فازي استوار است. اين نظريه تعميمي از نظريه كلاسيك مجموعه‌ها در علم رياضيات است. در تئوري كلاسيك مجموعه‌ها، يك عنصر، يا عضو مجموعه است يا نيست. در حقيقت عضويت عناصر از يك الگوي صفر و يك و باينري تبعيت مي‌كند. اما تئوري مجموعه‌هاي فازي اين مفهوم را بسط مي‌دهد و عضويت درجه‌بندي شده را مطرح مي‌كند. به اين ترتيب كه يك عنصر مي‌تواند تا درجاتي - و نه كاملاً - عضو يك مجموعه باشد. مثلاً اين جمله كه <آقاي الف به اندازه هفتاددرصد عضو جامعه بزرگسالان است> از ديد تئوري مجموعه‌هاي فازي صحيح است. در اين تئوري، عضويت اعضاي مجموعه از طريق تابع (u‌(x مشخص مي‌شود كه x نمايانگر يك عضو مشخص و u تابعي فازي است كه درجه عضويت ‌x در مجموعه مربوطه را تعيين مي‌كند و مقدار آن بين صفر و يك است (فرمول 1).

a71_fuzzy_10_s.jpg

فرمول 1





به بيان ديگر، (‌u‌(x نگاشتي از مقادير x به مقادير عددي ممكن بين صفر و يك را مي‌سازد. تابع (‌u‌(x ممكن است مجموعه‌اي از مقادير گسسته (discrete) يا پيوسته باشد. وقتي كهu  فقط تعدادي از مقادير گسسته بين صفر و يك را تشكيل مي‌دهد، مثلاً ممكن است شامل اعداد 3/0 و 5/0 و 7/0 و 9/0 و صفر و يك باشد. اما وقتي مجموعه مقاديرu  پيوسته باشند، يك منحني پيوسته از اعداد اعشاري بين صفر و يك تشكيل مي‌شود.

شكل 1 نموداري از نگاشت پيوسته مقادير x به مقادير ‌(‌u‌(x را نشان مي‌دهد. تابع‌ (‌u‌(x در اين نمودار مي‌تواند قانون عضويت در يك مجموعه فازي فرضي را تعريف كند.
 
 
a71_fuzzy_1_s.jpg

شكل 1














منطق فازي چگونه به‌كار گرفته مي‌شود؟
منطق فازي را از طريق قوانيني كه <عملگرهاي فازي> ناميده مي‌شوند، مي‌توان به‌كار گرفت. اين قوانين معمولاً بر اساس مدل زير تعريف مي‌شوند:

IF variable IS set THEN action
به عنوان مثال فرض كنيد مي‌خواهيم يك توصيف فازي از دماي يك اتاق ارائه دهيم. در اين صورت مي‌توانيم چند مجموعه فازي تعريف كنيم كه از الگوي تابع (‌u‌(x تبعيت كند. شكل 2 نموداري از نگاشت متغير <دماي هوا> به چند مجموعه‌ فازي با نام‌هاي <سرد>، <خنك>، <عادي>، <گرم> و <داغ> است. چنان كه ملاحظه مي‌كنيد، يك درجه حرارت معين ممكن است متعلق به يك يا دو مجموعه باشد.
 
a71_fuzzy_5_s.jpg

شكل 2

به عنوان نمونه، درجه حرارت‌هاي بين دماي T1 و T2 هم متعلق به مجموعه <سرد> و هم متعلق به مجموعه <خنك> است. اما درجه عضويت يك دماي معين در اين فاصله، در هر يك از دو مجموعه متفاوت است. به طوري كه دماي نزديك  ‌T2 تنها به اندازه چند صدم در مجموعه <سرد> عضويت دارد، اما نزديك نوددرصد در مجموعه <خنك> عضويت دارد.
a71_fuzzy_7_s.jpg

پارادايم حاكم بر يك كنترلر فازي به اين ترتيب است كه متغيرهاي دنياي واقعي به عنوان ورودي دريافت مي‌شوند. قوانين فازي آن‌ها را به متغيرهاي معنايي تبديل مي‌كند. فرآيند فازي اين ورودي را مي‌گيرد و خروجي معنايي توليد مي‌كند و سرانجام خروجي‌ها به زبان دنياي واقعي ترجمه مي‌شوند. نمودار شكل 3 مصداقي از همين روند است.


اكنون مي‌توان بر اساس مدل فوق قانون فازي زير را تعريف كرد:

اگر دماي اتاق <خيلي گرم> است، سرعت پنكه را <خيلي زياد> كن.
اگر دماي اتاق <گرم> است، سرعت پنكه را <زياد> كن.
اگر دماي اتاق <معتدل> است، سرعت پنكه را در <همين اندازه> نگه‌دار.
اگر دماي اتاق <خنك> است، سرعت پنكه را <كم> كن.
اگر دماي اتاق <سرد> است، پنكه را <خاموش> كن.

اگر اين قانون فازي را روي يك سيستم كنترل دما اعمال كنيم، آن‌گاه مي‌توانيم دماسنجي بسازيم كه دماي اتاق را به صورت خودكار و طبق قانون ما، كنترل مي‌كند. اما اين سؤال پيش مي‌آيد كه اگر دو يا چند قانون همزمان براي يك متغير ورودي فعال شود چه اتفاقي خواهد افتاد؟ فرض كنيد دماي اتاق برابر Tx1‌ است در اين صورت هم قانون مربوط به اتاق گرم و هم قانون مربوط به دماي اتاق معتدل صادق است و مقادير U1 و U2 به ترتيب به دست مي‌آيد. طبق كدام قانون بايد عمل كرد؟ لطفي‌زاده خود پاسخ اين معما را نداد. در سال 1975 دو دانشمند منطق فازي به نام ممداني (Mamdani) و آسيليان اولين كنترل فازي واقعي را طراحي كردند. آنان پاسخ اين معما را با محاسبهِ نقطه ثقل (C) مساحتي كه از تركيب دو ذوزنقه زير U1 و U2 در شكل 3 پديد آمده و نگاشت آن به محور t و به دست آوردن مقدار Tx2 حل كردند.

منطق فازي، همچون منطق كلاسيك تعدادي عملگر پايه دارد. مثلاً در منطق كلاسيك از عملگرهاي AND و ‌OR و‌NOT استفاده مي‌شود كه دانش آموزان رشته رياضي فيزيك در دبيرستان با آن‌ها آشنا مي‌شوند. در منطق فازي معادل همين عملگرها وجود دارد كه به آن‌ها عملگرهاي <زاده> مي‌گويند. اين عملگرها به صورت زير تعريف مي‌شوند: (فرمول 2)

به عنوان مثال تركيب AND دو متغير x و y عبارت است از كمينه مقادير (‌u‌(x و (‌u(y. به عبارت ساده‌تر، آنجا كه هم x  و y از نظر فازي <صحيح> باشند، همزمان مقادير (‌u‌(x و (‌u(y به كمترين مقدار خود مي‌رسند.
a71_fuzzy_2_s.jpg

پرفسور لطفي‌زاده خالق نظريه مجموعه‌هاي فازي و منطق فازي‌

تفاوت ميان نظريه احتمالات و منطق فازي‌
يكي از مباحث مهم در منطق فازي، تميزدادن آن از نظريه احتمالات در علم رياضيات است. غالباً نظريه فازي با نظريه احتمالات اشتباه مي‌شود. در حالي كه اين دو مفهوم كاملاً با يكديگر متفاوتند. اين موضوع به قدري مهم است كه حتي برخي از دانشمندان بزرگ علم رياضيات در دنيا - به‌ويژه كشورهاي غربي - درمورد آن با يكديگر بحث دارند و جالب آن كه هنوز هم رياضيداناني وجود دارند كه با منطق فازي مخالفند و آن را يك سوء تعبير از نظريه احتمالات تفسير مي‌كنند.

از نگاه اين رياضيدانان، منطق فازي چيزي نيست جز يك برداشت نادرست از نظريه احتمالات كه به گونه‌اي غيرقابل قبول، مقادير و اندازه‌گيري‌هاي نادقيق را وارد علوم رياضيات، مهندسي و كنترل كرده است. بعضي نيز مانند Bruno de Finetti معتقدند فقط يك نوع توصيف از مفهوم عدم‌قطعيت در علم رياضيات كافي است و چون علم آمار و احتمالات وجود دارد، نيازي به مراجعه به منطق فازي نيست.
 
با اين حال، اكثريت طرفداران نظريه منطق فازي، كارشناسان و متخصصاني هستند كه به طور مستقيم يا غيرمستقيم با علم مهندسي كنترل سروكار دارند. حتي تعدادي از پيروان منطق فازي همچون بارت كاسكو تا آنجا پيش مي‌روند كه احتمالات را شاخه و زيرمجموعه‌اي از منطق فازي مي‌نامند.

توضيح تفاوت ميان اين دو نظريه البته كار چندان دشواري نيست. منطق فازي با حقايق نادقيق سروكار دارد و به حدود و درجات يك واقعيت اشاره دارد؛ حال آن‌كه نظريه احتمالات بر شالوده مجموعه حالات تصادفيِ يك پديده استوار است و درباره شانس وقوع يك حالت خاص صحبت مي‌كند؛ حالتي كه وقتي اتفاق بيفتد، دقيق فرض مي‌شود. ذكر يك مثال مي‌تواند موضوع را روشن كند. فرض كنيد در حال رانندگي در يك خيابان هستيد. اتفاقاً متوجه مي‌شويد كه كودكي در اتومبيل ديگري كه به موازات شما در حال حركت است، نشسته و سر و يك دست خود را از پنجره ماشين بيرون آورده و در حال بازي‌گوشي است. اين وضعيت واقعي است و نمي‌توان گفت احتمال اين‌كه بدن اين كودك بيرون اتومبيل باشد، چقدر است.
 
چون بدن او واقعاً بيرون ماشين است، با اين توضيح كه بدن او كاملاً بيرون نيست، بلكه فقط بخشي از بدن او در خارج اتومبيل قرارگرفته است. تئوري احتمالات در اينجا كاربردي ندارد. چون ما نمي‌توانيم از احتمال خارج بودن بدن كودك از ماشين صحبت كنيم؛ زيرا آشكارا فرض غلطي است. اما مي‌توانيم از احتمال وقوع حادثه‌ صحبت كنيم. مثلاً هرچه بدن كودك بيشتر بيرون باشد، احتمال اين‌كه در اثر برخورد با بدنه يك اتومبيل در حال حركت دچار آسيب شود، بيشتر مي‌شود. اين حادثه هنوز اتفاق نيفتاده است، ولي مي‌توانيم از احتمال وقوع آن صحبت كنيم. اما بيرون بودن تن كودك از ماشين همين حالا به واقعيت تبديل شده است و فقط مي‌توانيم از ميزان و درجات آن صحبت كنيم.

تفاوت ظريف و در عين حال پررنگي ميان نظريه احتمالات و نظريه فازي وجود دارد كه اگر دقت نكنيم، دچار اشتباه مي‌شويم؛ زيرا اين دو نظريه معمولاً در كنار يكديگر و در مورد اشياي مختلف همزمان مصداق‌هايي پيدا مي‌كنند. هنگامي كه به يك پديده مي‌نگريم، نوع نگاه ما به آن پديده مي‌تواند تعيين كند كه بايد درباره احتمالات صحبت كنيم يا منطق فازي. در مثال فوق موضوع دغدغه ما كودكي است كه در حال بازي گوشي است. اما يك وقت نگران اين هستيم كه تا چه اندازه خطر او را تهديد مي‌كند. خطري كه هنوز به وقوع نپيوسته است. يك وقت هم ممكن است نگران باشيم كه بدن او چقدر بيرون پنجره است. واقعيتي كه هم‌اكنون به وقوع پيوسته است.
a71_fuzzy_9_s.jpg

شكل 4

يك ديدگاه درباره علت بحث و جدل علمي ميان دانشمندان اين است كه برخي از رياضيدانان اتكا به علم آمار و احتمال را كافي مي‌دانند و نظريه فازي را يك برداشت غيركارآمد از جهان درباره ما تلقي مي‌كنند. به عنوان مثال، اگر به مورد كودك و اتومبيل مراجعه كنيم، اين پرسش مطرح مي‌شود كه اگر نگراني و دغدغه نهايي ما احتمال وقوع حادثه است، ديگر چه نيازي به اين است كه ما درباره درجات <بيرون بودن تن كودك از اتومبيل> صحبت كنيم؟
 
بحث درباره ابعاد فلسفي منطق فازي بسيار شيرين و البته گسترده است. متأسفانه مجال براي طرح گستردهِ ابعاد فلسفي منطق فازي در اين مقاله وجود ندارد. از اين رو اگر مايل به مطالعه بيشتر در اين زمينه هستيد، كتاب بسياري خواندني <تفكر فازي> را كه در پي‌نوشت دوم انتهاي مقاله معرفي كرده‌ام، توصيه مي‌كنم.(شكل 4)


كاربردهاي منطق فازي‌

منطق فازي كاربردهاي متعددي دارد. ساده‌ترين نمونه يك سيستم كنترل دما يا ترموستات است كه بر اساس قوانين فازي كار مي‌كند. سال‌هاست كه از  منطق فازي براي كنترل دماي آب يا ميزان كدرشدن آبي كه لباس‌ها در آن شسته شده‌اند در ساختمان اغلب ماشين‌هاي لباسشويي استفاده مي‌شود.
 
امروزه ماشين‌هاي ظرفشويي و بسياري از ديگر لوازم خانگي نيز از اين تكنيك استفاده مي‌كنند. منطق فازي در صنعت خودروسازي نيز كاربردهاي فرواني دارد. مثلاً سيستم ترمز و ABS در برخي از خودروها از منطق فازي استفاده مي‌كند. يكي از معروف‌ترين نمونه‌هاي به‌كارگيري منطق فازي در سيستم‌هاي ترابري جهان، شبكه مونوريل (قطار تك ريل) توكيو در ژاپن است. ساير سيستم‌هاي حركتي و جابه‌جايي بار، مثل آسانسورها نيز از منطق فازي استفاده مي‌كنند.
 
سيستم‌هاي تهويه هوا نيز به وفور منطق فازي را به‌كار مي‌گيرند. از منطق فازي در سيستم‌هاي پردازش تصوير نيز استفاده مي‌شود. يك نمونه از اين نوع كاربردها را مي‌توانيد در سيستم‌هاي <تشخيص لبه و مرز> اجسام و تصاوير(3) مشاهده كنيد كه در روباتيك نيز كاربردهايي دارد. به طور كلي خيلي از مواقع در ساختمان سيستم‌هاي تشخيص الگوها (Pattern Recognition) مثل سيستم‌هاي تشخيص گفتار و پردازش تصوير از منطق فازي استفاده مي‌شود.

 

a71_fuzzy_6_s.jpg

شكل 3

a71_fuzzy_8_s.jpg

فرمول .2

منطق فازي و هوش مصنوعي‌
جالب‌ترين كاربرد منطق فازي، تفسيري است كه اين علم از ساختار تصميم‌گيري‌هاي موجودات هوشمند، و در راس آن‌ها، هوش انساني، به دست مي‌دهد.
 
اين منطق به خوبي نشان مي‌دهد كه چرا منطق دو ارزشي <صفر و يك> در رياضيات كلاسيك قادر به تبيين و توصيف مفاهيم نادقيقي همچون <گرما و سرما> كه مبناي بسياري از تصميم‌گيري‌هاي هوشمند را تشكيل مي‌دهند، نيست.

شايد يكي از جالب‌ترين كاربردهاي منطق فازي هوش مصنوعي در بازي‌هاي رايانه‌اي و جلوه‌هاي ويژه سينمايي باشد. برخي از خوانندگان كه بخش هنر و سرگرمي ماهنامه شبكه را دنبال مي‌كنند، ممكن است مقاله ارباب حلقه‌ها را در شماره 41 به ياد بياورند. در آنجا درباره چگونگي توليد جلوه‌هاي ويژه در اين فيلم سينمايي صحبت كردم و از نرم‌افزار Massive نام بردم. از اين نرم‌افزار در بسياري از صحنه‌هاي فيلم براي توليد حركات لشكر موجودات متخاصم استفاده شده بود.
 
a71_fuzzy_4_s.jpg

a71_fuzzy_3_s.jpg

شكل 5

در اين برنامه متخصصان كامپيوتر و انيميشن ابتدا موجوداتي را به صورت الگو ايجاد كرده بودند و سپس به كمك منطق فازي مصداق‌هايي تصادفي از اين موجودات خيالي پديدآورده بودند كه حركات تصادفي - اما از پيش تعريف شده‌اي ‌-‌ در اعضاي بدن خود داشتند.
 
اين موجودات در حقيقت داراي نوعي هوش مصنوعي بودند و مي‌توانستند براي نحوه حركت دادن اعضاي بدن خود تصميم بگيرند. در عين حال تمام موجوداتي كه در يك لشكر به سويي مي‌تاختند يا با دشمني مي‌جنگيدند، از جهت حركت يكساني برخودار بودند و به سوي يك هدف مشخص حمله مي‌كردند(شكل5).

اين ساختار كاملا‌ً پيچيده و هوشمند به فيلمسازان اجازه داده بود كه اين موجودات افسانه‌اي را در دنياي مجازي كامپيوتر به حال خود رها كنند تا به سوي دشمنان حمله كنند و اين همه بي‌ترديد بدون بهره‌گيري از منطق فازي امكانپذير نبود.
 

شركت Massive Software كه به دليل به‌كارگيري منطق فازي براي ايجاد هوش‌مصنوعي در طراحي لشكريان فيلم‌ ارباب حلقه‌ها برنده جايزه اسكار شد، بعداً اين تكنيك را در فيلم‌هاي ديگري همچون I.Robot و King Kong نيز به‌كار برد.

استفاده از منطق فازي براي هوشمند‌كردن موجودات نرم‌افزاري تنها گونه‌اي از كاربردهاي اين نظريه در هوش‌مصنوعي است. منطق فازي در هوشمند ساختن روبات‌هاي سخت‌افزاري نيز كاربردهاي زيادي دارد. در شماره‌هاي آتي ماهنامه شبكه به اين موضوع بيشتر خواهيم پرداخت.

پي‌نوشت:
1- گاهي از او با نام <زاده> نيز نام برده مي‌شود و برخي از قوانين منطق فازي به پيروي از آداب تاريخي علم رياضيات، با كلمه Zadeh نامگذاري شده‌اند.

2- تفكر فازي- نوشته بارت كاسكو - ترجمه دكتر علي غفاري - انتشارات دانشگاه صنعتي خواجه‌نصيرالدين طوسي.

3- Edge Detection Systems



مطالب مشابه :


سیستم های فازی و کنترل فازی

اسلاید فصل ۱تا ۱۳ سیستم فازی و کنترل فازی نوشته : لی وانگ با ترجمه:محمد تشنه لب و




همه چیز درمورد منطق فازی

مطالب الکترونیک وکنترل دانلود حل المسائل کتاب نظریه سیستمهای فازی، سیستم




کتب جدید

نظریه های مجموعه های فازی فرآیند تنظیم ،تصویب ،اجرا وکنترل سیستم های




جزوات برق سری

مهندسی برق +جزوات درسی +انجام شبیه سازی + ترجمه مقالا ت لاتین+دانلود رایگان فیلم های های




دانلود پروژهRFIDبه انضمام توضیحات کامل

مطالب الکترونیک وکنترل دانلود فیلم های آموزشی کتاب آموزش سیستم اعداد هگزا




منابع تغذیه سوییچینگ و انواع تراشه های منابع تغذیه

مطالب الکترونیک وکنترل دانلود فیلم های آموزشی کتاب آموزش سیستم اعداد هگزا




برچسب :