مجموعه مقالات نانو تکنولوژی
نانوالياف ها نويد دهنده انقلابي بزرگ در فناوري هستند که زماني مشابه آن را فيبرهاي نوري ايجاد کردند.الياف نانومتري داراي قطر نانومتري هستند، در حالي که طول آنها به چندين کيلومتر هم مي رسد. از آنجايي که الياف توليد شده به روش الکتروريسندگي داراي قطري در محدوده 50 - 500 نانومتر هستند، در حيطه نانو فناوري مورد توجه قرار گرفته اند.تاکنون روشهاي متعددي براي توليد الياف نانومتري در نظر گرفته شده است که از ميان آنها روش الکتروريسندگي علاوه بر سادگي از بازده بالاتري برخوردار است و مي توان گفت اين روش تنها روشي است که در آينده مي توان از آن براي توليد نانو الياف به صورت هم جهت و پيوسته استفاده کرد. در روشهاي محصول توليد الياف با قطر بزرگتر ابتدا مذاب پليمري با اعمال نيروهاي مکانيکي تحت کشش قرار مي گيرد و از داخل حديده خارج مي شود و در نهايت رشته اي از الياف به دست مي آيد. در فرآيند الکتروريسندگي نيز مانند روشهاي توليدي معمول ، سيال مورد نظر به صورت مذاب و يا محلول پليمري تحت کشش قرار مي گيرد. اما اين کشش برخلاف روشهاي معمول که از طريق نيروي مکانيکي خارجي ايجاد مي شود، به کمک نيروهاي الکترواستاتيک و باردار کردن محلول و يا مذاب پليمري ايجاد خواهد شد. نوع پليمر انتخاب شده به کاربرد آن بستگي دارد.
از تصور تا واقعيت
به گفته مهندس شميم ضرغام و مهندس امير توکلي ، دانش آموختگان کارشناسي ارشد مهندسي نساجي دانشگاه آزاد اسلامي ، در اين طرح تحقيقاتي علاوه بر بررسي فرآيند الکتروريسندگي و توليد نانوالياف نايلوني ، متغيرهاي موثر بر فرآيند نيز بررسي شد. قطر الياف نانو به پارامترهاي مختلفي مانند غلظت پليمر، ولتاژ الکتريکي اعمال شده ، فاصله ، دبي جريان ، قطر سوزن و نوع جمع کننده بستگي دارد. اين پژوهشگران با بهينه سازي شرايط فرآيندي موثر بر توليد الياف نانو در شرايط آزمايشگاهي ، موفق به توليد اليافي با قطر کمتر از 100 نانومتر شدند. هر چه الياف توليدي ظريف تر باشند، خواص مطلوب تري از خود بروز مي دهند. به دليل همراستا بودن الياف در اين نمونه ، استحکام مکانيکي آن نيز افزايش يافت. يکي از مشکلات فرآيند توليد الياف نانو به روش الکتروريسندگي ، نبود يکنواختي در ميزان کشيدگي الياف است که با کنترل پارامترهاي تاثيرگذار مي توان اين مشکل را از ميان برداشت.مطالعات انجام شده نشان مي دهد با توجه به امکانات و قابليت هاي موجود در کشور، دستيابي به دانش فني توليد اين مواد در مقياس صنعتي و نيمه صنعتي امکان پذير خواهد بود.
فيلترهايي از جنس نانو الياف
به گفته توکلي ، يکي ديگر از طرحهاي پژوهشي در اين زمينه کاربرد نانو الياف پليمري در فيلتراسيون هواست که پس از مطالعه متغيرهاي موثر بر فيلتراسيون هوا و براساس تجارب به دست آمده در فرآيند توليد نانوالياف ، عوامل مختلف انتخاب و بررسي شد. براي بررسي ارتباط ميان متغيرهاي فيلتر با متغيرهاي وابسته به آن لازم است تاثير متغيرهاي فوق را با استفاده از يک دستگاه آزمون بررسي کنيم.بنابراين ، دستگاه آزمون فيلتر مناسبي در مقياس آزمايشگاهي براي نخستين بار در کشور طراحي و ساخته شد و سپس نمونه ها در شرايط معين مورد آزمايش قرار گرفتند. در اين طرح پژوهشي ، قابليت الياف نانو در فيلتراسيون با فيلترهاي متداول و مکانيزم عملکرد آنها مقايسه شد. آزمايش هاي گوناگون نشان داد الياف نانو از قابليت بسيار بالايي براي استفاده در فيلتراسيون برخوردارند و مي توانند به عنوان يک لايه مکمل به انواع فيلترها اضافه شوند. برخلاف فيلترهاي معمولي ، لايه الياف نانو توانايي فيلتراسيون ذرات در مقياس ميکرون را دارد که با استفاده از آن مي توان فيلترهاي ارزان قيمت و با کارايي بالا به دست آورد.
مکانيزم فيلتراسيون الياف نانو با الياف معمولي متفاوت است. همين ويژگي سبب گسترش محدوده کاربرد اين الياف در جوانب مختلف زندگي روزمره انسان ها شده است ,به گفته ضرغام ، در اين پژوهش به کمک فرآيندهاي طراحي شده ، اثر پارامترهاي تاثيرگذار و مهم بررسي شد و چگونگي تنظيم آنها براي توليد محصولي قابل قبول مورد مطالعه قرار گرفت. از دستاوردهاي اين پژوهش مي توان به طراحي و ساخت تجهيزات الکتروريسندگي براي توليد الياف بي بافت و کاربرد اين الياف در ساخت فيلتراسيون هاي مورد استفاده در صنايع مختلف اشاره کرد.
نانو الياف در خدمت فناوري
ويژگي متمايز اين الياف سبب مي شود نانو الياف پلميري به عنوان مواد مناسبي در زمينه هاي مختلف صنعتي استفاده شوند که از آن جمله مي توان به کاربرد اين الياف در ساخت نانو کامپوزيت هاي پليمري ، صنايع فيلتراسيون ، نظامي و پزشکي اشاره کرد.امروزه استفاده از الياف نانو براي ساخت لباسهاي محافظ در مقابل عوامل شيميايي و بيولوژيکي ، ساخت فيلترهايي با ويژگي هاي متفاوت و همچنين نانو کامپوزيت هاي پليمري به صورت کاربردي مطرح شده است. پيش بيني مي شود استفاده از اين الياف در فيلتراسيون تحول عظيمي را در اين بخش به وجود آورد.
به گفته توکلي ، اگر از يک فيلتر با کيفيت بالا در فرآيند فيلتراسيون هوا استفاده شود، ذرات تا مقياس 300 نانومتر در اين سطح محبوس خواهند شد و بازده اين فرآيند به 99.97 درصد ارتقاء خواهد يافت.هر چند اندازه منافذ قرار گرفته روي اين گونه فيلترها کوچک و ضخامت فيلتر در محدوده اي است که اجزاي فوق العاده کوچک را نيز به دام مي اندازد؛ اما در اين نوع فيلتراسيون لازم است جريان هوا با فشار وارد شود. در غير اين صورت توانايي فيلتراسيون کاهش مي يابد و همانند يک فيلتر معمولي عمل مي کند.با استفاده از لايه نازکي از الياف نانو مي توان فرايند فيلتراسيون را در فشار هواي معمولي و جريان هواي کم با کيفيتي مشابه فيلترهايي از جنس الياف شيشه اي انجام داد.به گفته ضرغام ، قطر الياف نانوي مورد استفاده در اين نوع فيلترها به کمتر از يک ميکرون مي رسد که همين امر باعث زياد شدن نسبت سطح به حجم ، کوچک شدن منافذ و در نهايت تخلخل بالا مي شود. اين فيلترها مي توانند با وجود کارايي بسيار بالا در فيلتراسيون ذرات ريز، افت فشار را نيز به حداقل برساند. اين ويژگي سبب افزايش کارايي فيلتر، کاهش افت فشار و افزايش طول عمر آن مي شود.براي مثال ، نانو فيلترهاي مورد استفاده در صنايع خودروسازي سبب صرفه جويي در مصرف سوخت و انرژي ، سوختن کامل بنزين در موتور، کاهش آلودگي هوا و مشکلات زيست محيطي و کاهش هزينه ها مي شود. اين در حالي است که با ورود هواي تميز به داخل موتور اتومبيل ، بازده موتور افزايش و ورود ذرات آلوده به داخل موتور کاهش مي يابد.
آينده در تسخير نانو
انسان ها در معرض يک انقلاب اجتماعي قدرتمند و تسريع شده قرار گرفته اند که تا حدودي ناشي از توسعه نانو فناوري در زمينه هاي مختلف زندگي است. در آينده اي نه چندان دور، دانشمندان قادر به ساخت اولين آدم آهني در مقياس نانو مي شوند که حتي مي تواند همانندسازي کند و طي چند سال با توليد 5 ميليارد تريليون نانو روبات ، تقريبا تمامي فرآيندهاي صنعتي و نيروي کار کنوني از رده خارج خواهد شد. با اين تحول عظيم ، کالاهاي مصرفي به وفور يافت مي شود، در حالي که ارزان ، شيک و بادوام خواهد بود. دارو درماني جهشي سريع و کوانتومي را تجربه مي کند، سفرهاي فضايي مقرون به صرفه خواهد شد و به طور کلي سبک زندگي در جهان به صورت زيربنايي متحول شده و الگوهاي رفتاري انسان ها نيز بناچار تحت تاثير اين روند قرار خواهد گرفت.
کاربرد نانو تکنولوژی در پزشکی
کاربرد نانو تکنولوژی در پزشکی
یك باكتری مغناطیسی می تواند در امتداد میدان مغناطیسی زمین قرار گیرد و مطابق با آن بالا یا پایین برود تا مقصد مورد نظرش را پیدا كند.
در سال ۱۹۶۶ فیلمی تخیلی با عنوان «سفر دریایی شگفت انگیز» اهالی سینما را به دیدن نمایشی جسورانه از كاربرد نانوتكنولوژی در پزشكی میهمان كرد. گروهی از پزشكان جسور و زیردریایی پیشرفته شان با شیوه ای اسرارآمیز به قدری كوچك شدند كه می توانستند در جریان خون بیمار سیر كنند و لخته خونی را در مغزش از بین ببرند كه زندگی او را تهدید می كرد.
با گذشت ۳۶ سال از آن زمان، برای ساختن وسایل پیچیده حتی در مقیاس های كوچك تر گام های بلندی برداشته شده است. این امر باعث شده برخی افراد باور كنند كه چنین دخالت هایی در پزشكی امكان پذیر است و روبات های بسیار ریز قادر خواهند بود در رگ های هر كسی سفر كنند.
همه جانداران از سلول های ریزی تشكیل شده اند كه خود آنها نیز از واحدهای ساختمانی كوچك تر در حد نانومتر (یك میلیاردم متر) نظیر پروتئین ها، لیپیدها و اسیدهای نوكلئیك تشكیل شده اند. از این رو، شاید بتوان گفت كه نانوتكنولوژی به نحوی در عرصه های مختلف زیست شناسی حضور دارد. اما اصطلاح قراردادی «نانوتكنولوژی» به طور معمول برای تركیبات مصنوعی استفاده می شود كه از نیمه رساناها، فلزات، پلاستیك ها یا شیشه ساخته شده اند. نانوتكنولوژی از ساختارهایی غیرآلی بهره می گیرد كه از بلورهای بسیار ریزی در حد نانومتر تشكیل شده اند و كاربردهای وسیعی در زمینه تحقیقات پزشكی، رساندن داروها به سلول ها، تشخیص بیماری ها و شاید هم درمان آنها پیدا كرده اند.
در برخی محافل نگرانی های شدیدی در مورد جنبه منفی این فناوری به وجود آمده است؛ آیا این نانوماشین ها نمی توانند از كنترل خارج شده و كل جهان زنده را نابود كنند؟
با وجود این به نظر می رسد فواید این فناوری بیش از آن چیزی باشد كه تصور می رود. برای مثال، می توان با بهره گیری از نانوتكنولوژی وسایل آزمایشگاهی جدیدی ساخت و از آنها در كشف داروهای جدید و تشخیص ژن های فعال تحت شرایط گوناگون در سلول ها، استفاده كرد. به علاوه، نانوابزارها می توانند در تشخیص سریع بیماری ها و نقص های ژنتیكی نقش ایفا كنند.
طبیعت نمونه زیبایی از سودمندی بلورهای غیرآلی را در دنیای جانداران ارائه می كند. باكتری های مغناطیسی، جاندارانی هستند كه تحت تاثیر میدان مغناطیسی زمین قرار می گیرند. این باكتری ها فقط در عمق خاصی از آب یا گل ولای كف آن رشد می كنند. اكسیژن در بالای این عمق بیش از حد مورد نیاز و در پایین آن بیش از حد كم است.
باكتری ای كه از این سطح خارج می شود باید توانایی شنا كردن و برگشت به این سطح را داشته باشد. از این رو، این باكتری ها مانند بسیاری از خویشاوندان خود برای جابه جا شدن از یك دم شلاق مانند استفاده می كنند. درون این باكتری ها زنجیره ای با حدود ۲۰ بلور مغناطیسی وجود دارد كه هر كدام بین ۳۵ تا ۱۲۰ نانومتر قطر دارند. این بلورها در مجموع یك قطب نمای كوچك را تشكیل می دهند. یك باكتری مغناطیسی می تواند در امتداد میدان مغناطیسی زمین قرار گیرد و مطابق با آن بالا یا پایین برود تا مقصد مورد نظرش را پیدا كند.
این قطب نما اعجاز مهندسی طبیعت در مقیاس نانو است. اندازه بلورها نیز مهم است. هر چه ذره مغناطیسی بزرگ تر باشد، خاصیت مغناطیسی اش مدت بیشتری حفظ می شود. اما اگر این ذره بیش از حد بزرگ شود خود به خود به دو بخش مغناطیسی مجزا تقسیم می شود كه خاصیت مغناطیسی آنها در جهت عكس یكدیگرند. چنین بلوری خاصیت مغناطیسی كمی دارد و نمی تواند عقربه كارآمدی برای قطب نما باشد. باكتری های مغناطیسی قطب نماهای خود را فقط از بلورهایی با اندازه مناسب می سازند تا از آنها برای بقای خود استفاده كنند.
جالب است كه وقتی انسان برای ذخیره اطلاعات روی دیسك سخت محیط هایی را طراحی می كند دقیقاً از این راهكار باكتری ها پیروی می كند و از بلورهای مغناطیسی در حد نانو و با اندازه ای مناسب استفاده می كند تا هم پایدار باشند و هم كارآمد.
محققان در تلاش هستند تا از ذرات مغناطیسی در مقیاس نانو برای تشخیص عوامل بیماری زا استفاده كنند. روش این محققان نیز مانند بسیاری از مهارت هایی كه امروزه به كار می رود به آنتی بادی های مناسبی نیاز دارد كه به این عوامل متصل می شوند. ذرات مغناطیسی مانند برچسب به مولكول های آنتی بادی متصل می شوند. اگر در یك نمونه، عامل بیماری زای خاصی مانند ویروس مولد ایدز مد نظر باشد، آنتی بادی های ویژه این ویروس كه خود به ذرات مغناطیسی متصل هستند به آنها می چسبند.
برای جدا كردن آنتی بادی های متصل نشده، نمونه را شست وشو می دهند. اگر ویروس ایدز در نمونه وجود داشته باشد، ذرات مغناطیسی آنتی بادی های متصل شده به ویروس، میدان های مغناطیسی تولید می كنند كه توسط دستگاه حساسی تشخیص داده می شود. حساسیت این مهارت آزمایشگاهی از روش های استاندارد موجود بهتر است و به زودی اصلاحات پیش بینی شده، حساسیت را تا چند صد برابر تقویت خواهد كرد.
دنیای پیشرفته الكترونیك پر از مواد پخش كننده نور است. برای نمونه هر CDخوان، CD را با استفاده از نوری می خواند كه از یك دیود لیزری می آید. این دیود از یك نیمه رسانای غیرآلی ساخته شده است. هر تصویر، قسمت كوچكی از یك CD به اندازه یك مولكول پروتئین (در حد نانومتر) را می كند. در نتیجه این عمل یك نانو بلور نیمه رسانا یا به اصطلاح تجاری یك «نقطه كوانتومی» ایجاد می شود.
فیزیكدانانی كه برای اولین بار در دهه ۱۹۶۰ نقاط كوانتومی را مطالعه می كردند معتقد بودند كه این نقاط در ساخت وسایل الكترونیكی جدید و وسایل دید استفاده خواهند شد. تعداد انگشت شماری از این محققان ابراز می كردند كه از این یافته ها می توان برای تشخیص بیماری یا كشف داروهای جدید كمك گرفت و هیچ كدام از آنان حتی در خواب هم نمی دیدند كه اولین كاربردهای نقاط كوانتومی در زیست شناسی و پزشكی باشد.
نقاط كوانتومی قابلیت های زیادی دارند و در موارد مختلفی مورد استفاده قرار می گیرند. یكی از كاربردهای این نقاط نیمه رسانا در تشخیص تركیبات ژنتیكی نمونه های زیستی است. اخیراً برخی محققان روش مبتكرانه ای را به كار بردند تا وجود یك توالی ژنتیكی خاص را در یك نمونه تشخیص دهند. آنان در طرح خود از ذرات طلای ۱۳ نانومتری استفاده كردند كه با DNA (ماده ژنتیكی) تزئین شده بود. این محققان در روش ابتكاری خود از دو دسته ذره طلا استفاده كردند. یك دسته، حامل DNA بود كه به نصف توالی هدف متصل می شد و DNA متصل به دسته دیگر به نصف دیگر آن متصل می شد. DNA هدفی كه توالی آن كامل باشد به راحتی به هر دو نوع ذره متصل می شود و به این ترتیب دو ذره به یكدیگر مربوط می شوند.
از آنجا كه به هر ذره چندین DNA متصل است، ذرات حامل DNA هدف می توانند چندین ذره را به یكدیگر بچسبانند. وقتی این ذرات طلا تجمع می یابند خصوصیاتی كه باعث تشخیص آنها می شود به مقدار چشم گیری تغییر می كند و رنگ نمونه از قرمز به آبی تبدیل می شود. چون كه نتیجه این آزمایش بدون هیچ وسیله ای قابل مشاهده است می توان آن را برای آزمایش DNA در خانه نیز به كار برد.
هیچ بحثی از نانوتكنولوژی بدون توجه به یكی از ظریف ترین وسایل در علوم امروزی یعنی میكروسكوپ اتمی كامل نمی شود. روش این وسیله برای جست وجوی مواد مانند گرامافون است. گرامافون، سوزن نوك تیزی دارد كه با كشیده شدن آن روی یك صفحه، شیارهای روی آن خوانده می شود. سوزن میكروسكوپ اتمی بسیار ظریف تر از سوزن گرامافون است به نحوی كه می تواند ساختارهای بسیار كوچك تر را حس كند. متاسفانه، ساختن سوزن هایی كه هم ظریف باشند و هم محكم، بسیار مشكل است.
محققان با استفاده از نانو لوله های باریك از جنس كربن كه به نوك میكروسكوپ متصل می شود این مشكل را حل كردند. با این كار امكان ردیابی نمونه هایی با اندازه فقط چند نانومتر فراهم شد. به این ترتیب، برای كشف مولكول های زنده پیچیده و برهم كنش هایشان وسیله ای با قدرت تفكیك بسیار بالا در اختیار محققان قرار گرفت.
این مثال و مثال های قبل نشان می دهند كه ارتباط بین نانوتكنولوژی و پزشكی اغلب غیرمستقیم است به نحوی كه بسیاری از كارهای انجام شده، در زمینه ساخت یا بهبود ابزارهای تحقیقاتی یا كمك به كارهای تشخیصی است. اما در برخی موارد، نانوتكنولوژی می تواند در درمان بیماری ها نیز مفید باشد. برای مثال می توان داروها را درون بسته هایی در حد نانومتر قرار داد و آزاد شدن آنها را با روش های پیچیده تحت كنترل در آورد. یكی از نانوساختارهایی كه برای ارسال دارو یا مولكول هایی مانند DNA به بافت های هدف ساخته شده، «دندریمر»ها هستند. این مولكول های آلی مصنوعی با ساختارهای پیچیده برای اولین بار توسط «دونالد تومالیا» ساخته شدند.
اگر شاخه های درختی را در یك توپ اسفنجی فرو ببرید به نحوی كه در جهت های مختلف قرار گیرند می توان شكلی شبیه یك مولكول دندریمر را ایجاد كرد. دندریمرها مولكول هایی كروی و شاخه شاخه هستند كه اندازه ای در حدود یك مولكول پروتئین دارند. دندریمرها مانند درختان پرشاخه و برگ دارای فضاهای خالی هستند، یعنی تعداد زیادی حفرات سطحی دارند.
دندریمرها را می توان طوری ساخت كه فضاهایی با اندازه های مختلف داشته باشند. این فضاها فقط برای نگه داشتن عوامل درمانی هستند. دندریمرها بسیار انعطاف پذیر و قابل تنظیم اند. همچنین آنها را می توان طوری ساخت كه فقط در حضور مولكول های محرك مناسب، خود به خود باد كنند و محتویات خود را بیرون بریزند. این قابلیت اجازه می دهد تا دندریمرهای اختصاصی بسازیم تا بار دارویی خود را فقط در بافت ها یا اندام هایی آزاد كنند كه نیاز به درمان دارند. دندریمرها می توانند برای انتقال DNA به سلول ها جهت ژن درمانی نیز ساخته شوند. این شیوه نسبت به روش اصلی ژن درمانی یعنی استفاده از ویروس های تغییر ژنتیكی یافته بسیار ایمن تر هستند.
همچنین محققان ذراتی به نام نانوپوسته ساخته اند كه از جنس شیشه پوشیده شده با طلا هستند. این نانوپوسته ها می توانند به صورتی ساخته شوند تا طول موج خاصی را جذب كنند. اما از آنجا كه طول موج های مادون قرمز به راحتی تا چند سانتی متر از بافت نفوذ می كنند، نانوپوسته هایی كه انرژی نورانی را در نزدیكی این طول موج جذب می كنند بسیار مورد توجه قرار گرفته اند. بنابراین، نانوپوسته هایی كه به بدن تزریق می شوند می توانند از بیرون با استفاده از منبع مادون قرمز قوی گرما داده شوند. چنین نانوپوسته هایی را می توان به كپسول هایی از جنس پلیمر حساس به گرما متصل كرد. این كپسول ها محتویات خود را فقط زمانی آزاد می كنند كه گرمای نانوپوسته متصل به آن باعث تغییر شكلش شود.
یكی از كاربردهای شگرف این نانوپوسته ها در درمان سرطان است. می توان نانوپوسته های پوشیده شده با طلا را به آنتی بادی هایی متصل كرد كه به طور اختصاصی به سلول های سرطانی متصل می شوند. از لحاظ نظری اگر نانوپوسته ها به مقدار كافی گرم شوند می توانند فقط سلول های سرطانی را از بین ببرند و به بافت های سالم آسیب نرسانند. البته مشكل است بدانیم آیا نانوپوسته ها در نهایت به تعهد خود عمل می كنند یا نه. این موضوع برای هزاران وسیله ریز دیگری نیز مطرح است كه برای كاربرد در پزشكی ساخته شده اند.
محققان از نانوتكنولوژی در ساخت پایه های مصنوعی برای ایجاد بافت ها و اندام های مختلف نیز استفاده كرده اند. محققی به نام «ساموئل استوپ» روش نوینی ابداع كرده است كه در آن سلول های استخوانی را روی یك پایه مصنوعی رشد می دهد. این محقق از مولكول های مصنوعی استفاده كرده است كه با رشته هایی تركیب می شوند كه این رشته ها برای چسباندن به سلول های استخوانی تمایل بالایی دارند. این پایه های مصنوعی می توانند فعالیت سلول ها را هدایت كنند و حتی می توانند رشد آنها را كنترل كنند. محققان امیدوارند سرانجام بتوانند روش هایی بیابند تا نه فقط استخوان، غضروف و پوست بلكه اندام های پیچیده تر را با استفاده از پایه های مصنوعی بازسازی كنند.
به نظر می رسد برخی از اهدافی كه امروزه در حال تحقق هستند در آینده ای نزدیك توسط پزشكان به كار گرفته شوند. جایگزینی قلب، كلیه یا كبد با استفاده از پایه های مصنوعی شاید با فناوری كه در فیلم سفر دریایی شگفت انگیز نشان داده شد، متناسب نباشد اما این تصور كه چنین درمان هایی در آینده ای نه چندان دور به واقعیت بپیوندند بسیار هیجان انگیز است. حتی هیجان انگیزتر اینكه امید است محققان بتوانند با تقلید از فرآیندهای طبیعی زیست شناختی، واحدهایی در مقیاس نانو تولید كنند و از آنها در ساخت ساختارهای بزرگ تر بهره گیرند. چنین ساختارهایی در نهایت می توانند برای ترمیم بافت های آسیب دیده و درمان بسیاری از بیماری ها به كار روند.
مطالب مشابه :
کاربرد های نانوتکنولوژی
مواد نانو (nanomaterials) قابلیت كنترل ساختار تشكیل دهنده مواد پیشرفته سیویلیکا. RSS . POWERED BY
نانو تکنولوژی
مقاله ، تحقیق ، پروژه ، پایان نامه - نانو تکنولوژی - دریافت مقاله ، پروژه و پایان نامه
کاربرد مواد نانو ساختار در صنعت ساختمان
کاربرد مواد نانو ساختار در صنعت ساختمان. خلاصه مواد نانو (Nan particular) به موادي گفته مي شود كه
فناوری نانو چیست؟
۞ ابعاد فیزیک ۞ - فناوری نانو چیست؟ - ۞ فیزیک روز . نجوم و اخترفیزیک سیویلیکا
مجموعه مقالات نانو تکنولوژی
مقاله ، تحقیق ، پروژه ، پایان نامه - مجموعه مقالات نانو تکنولوژی سیویلیکا. rss . powered by blogfa.com
کاربرد نانوتکنولوژی در مهندسی پزشکی نانو
مقاله ، تحقیق ، پروژه ، پایان نامه - کاربرد نانوتکنولوژی در مهندسی پزشکی نانو - دریافت مقاله
فروش نانو مواد با بهترین کیفیت
پارت شیمی - فروش نانو مواد با بهترین کیفیت - (سیویلیکا) مرجع مهندسی شیمی ایران (ایکمیکا)
كاربرد نانو تكنولوژي در كامپيوتر و الكترونيك
نانو فناوري زيستي و نانو فناوري مولكولي، انتشارات جهان نو، 1388، 10-12. سیویلیکا. rss . powered by
استفاده از فناورينانو در صنعت بستهبندي، تهيه و توليد غذاها
استفاده از فناورينانو در صنعت كشاورزي، آينده روشني در شكلگيري فرآيندهاي سیویلیکا.
برچسب :
نانو سیویلیکا