آشنايي با ساختار و عملکرد ترانزيستورها

آشنايي با ساختار و عملکرد ترانزيستورها


1- مقدمه

ترانزیستور دارای انواع گوناگونی است که مهم‌ترین آن BJT و MOSFET نام دارد. ما در این مقاله درباره‌ی ساختار و چگونگی عملکرد MOSFET مطالبی را خواهیم آموخت. کاربرد MOSFET درمدارهای الکترونیکی امروزی بسیار بیشتر از BJT است، بنابراین فعلا سراغ MOSFET می‌رویم. برای اختصار این نوع ترانزیستور را، ترانزیستور MOS می‌نامیم.

2- ساختار ترانزیستور MOS
ترانزیستور MOS دارای دو نوع گوناگون است. یکی NMOS و دیگری PMOS نام دارد. در ترانزیستور NMOS الکترون‌های آزاد حامل بار الکتریکی هستند و در ترانزیستور PMOS حفره‌های آزاد حامل بار الکتریکی می‌باشند. ابتدا ساختار ترانزیستور NMOS را شرح می‌دهیم. سپس با استفاده از تشابهاتِ موجود، ساختار ترانزیستور PMOS را نیز بیان می‌کنیم.
در تصویر1 ساختار یک ترانزیستور NMOS را مشاهده میک‌نیم. همان‌طور که در تصویر1 می‌بینیم ترانزیستور NMOS از سه ناحیه تشکیل شده است. هر سه ناحیه بر روی یک بدنه بنا شده است. در ترانزیستور NMOS، بدنه از جنس نیمه‌رسانای نوع p است. بر روی بدنه قطعه‌ای قرار گرفته که شامل دو ناحیه‌ی نیمه‌رسانای نوع n است. اين ناحيه‌ها با فاصله‌ی معینی از یکدیگر قرار گرفته‌اند و بین آن‌ها، نیمه‌رسانای نوع p قرار دارد.

p1%20copy.jpg

تصویر1- ساختار یک ترانزیستور NMOS

جنس ترانزیستور NMOS، مانند بسیاری از قطعات الکترونیکی دیگر، از عنصر سیلیسیوم (Si) است که با افزودن ناخالصی از عناصر سه ظرفیتی و پنج ظرفیتی به ترتیب به نیمه رسانای نوع p و نوع n آلاییده می‌شود. بر روی نیمه‌رسانای نوع p که در بین دو ناحیه‌ی n قرار دارد، یک لایه‌ی نازک از اکسید سیلیسیوم (SiO2) قرار گرفته که ماده‌ای نارسانا است. یک لایه‌ی رسانا (که در گذشته از جنس فلز بوده و در فناوری جدید از جنس سیلیسیومِ غیربلورین است) نیز بر روی لایه‌ی نازکِ اکسید قرار دارد.
بدنه‌ی ترانزیستور NMOS را زیربنا یا بدنه می‌نامیم. یکی از ناحیه‌ها‌ی نیمه‌رسانای نوع n را دِرِین (Drain) و دیگری را سورس (Source) می‌گوییم. لایه‌ی رسانای روی اکسید را هم گِیت (Gate) می‌نامیم.
در تصویر2 یک ترانزیستور PMOS را مشاهده می‌کنیم. همان‌طور که در تصویر2 می‌بینیم ترانزیستور PMOS بر روی زیربنايي از جنس نیمه‌رسانای نوع n، بنا شده است. ترانزیستور PMOS از دو ناحیه‌ی نیمه‌رسانای نوع p تشکیل شده که با فاصله‌ی معینی از یکدیگر قرار دارند. این دو ناحیه را دِرِین و سورس می‌نامیم. در بین دو ناحیه‌ی درین و سورس، ناحیه‌ای از جنس نیمه‌رسانای نوع n قرار دارد. مشابه ترنزیستور NMOS، در ترانزیستور PMOS نیز بر روی ناحیه‌ی بین سورس و درین، یک لایه‌ی نازک از اکسید سیلیسیوم قرار دارد. بر روی این لایه‌ی اکسید، یک لایه‌ی رسانا از جنس سیلیسیوم غیربلورین وجود دارد که آن‌را گیت می‌نامیم.
  p2%20copy.jpg

تصویر2- ساختار یک ترانزیستور PMOS

توجه کنید که هر دو ترانزیستور NMOS وPMOS، نسبت به سورس و درین ساختار متقارنی دارند. در هر دو ترانزیستور طول گیت را در امتداد مسیر بین سورس و درین است، طول کانال و راستای عمود بر آن را پهنای کانال می‌نامیم.

3- عملکرد ترانزیستور MOS
در این بخش نیز ابتدا عملکرد ترانزیستور NMOS را شرح می‌دهیم. و سپس به‌طور مشابه عملکرد ترانزیستور PMOS را از روی آن شرح خواهیم داد. بسيار خوب، یک ترانزیستور NMOS را در نظر می‌گیریم که مطابق تصویر3 به منبع ولتاژ متصل شده است (گیت را به پتانسیل مثبت متصل می‌کنیم. همچنین درین را به پتانسیل مثبت و سورس را به زمین متصل می‌کنیم).

p3%20copy.jpg

تصویر3- یک ترانزیستور NMOS متصل به منبع ولتاژ

همان‌طور که در تصویر3 مشاهده می‌کنیم با افزایش ولتاژ پایانه‌ی گیت، بار مثبت در این پایانه تجمع می‌کند (در واقع بار مثبت به دلیل اتصال به پایانه‌ی مثبت منبع ولتاژ، در گیت جمع می‌شود). به دلیل وجود یک لایه‌ی اکسید که نارسانای الکتریکی است، بار در محل گیت باقی می‌ماند و جمع می‌شود. در اثر پدیده‌ی القای الکتریکی، حفره‌های موجود در زیربنای نوع p، که دارای بار مثبت هستند، از زیر سطح گیت رانده می‌شوند و یون‌های منفی به جای می‌ماند (تصویر4 را ببینید). این ناحیه را که تعدادی از حامل‌های بار الکتریکی از آن رانده شده است، ناحیه‌ی تهی می‌نامیم.

p4%20copy.jpg

تصویر4- در اثر پدیده‌ی القای الکتریکی، حفره‌های موجود در زیربنای نوع p از زیر سطح گیت رانده می‌شوند و یون‌های منفی به جای می‌ماند

تا کنون و تحت این شرایط هیچ جریان الکتریکی به وجود نیامده است. زیرا مسیر بین سورس و درین به اندازه‌ی کافی دارای حامل بار الکتریکی نیست. با افزایش ولتاژ گیت به تدریج تعدادی از الکترون‌های آزاد که در ناحیه‌ی سورس قرار دارند به محدوده‌ی زیر اکسید گیت وارد می‌شوند (دلیل این اتفاق آن است که ولتاژ گیت و همچنین درین مثبت است و بار الکترون‌ها منفی است. بنابراین با افزایش ولتاژ مثبت، الکترون‌ها به دلیل نیروی جاذبه‌ی الکتریکی تمایل پیدا می‌کنند که به سمت درین حرکت کنند). چنان‌چه ولتاژ گیت را باز هم بیشتر کنیم، با توجه به اینکه ولتاژ درین نیز مثبت (تصویر3) است و الکترون‌ها را به سمت خود جذب می‌کند، الکترون‌های آزاد از سورس به درین منتقل می‌شوند و جریان الکتریکی ایجاد می‌شود. به این ترتیب یک کانال یا مسیر از حامل‌های بار الکتریکی، که در این‌جا از نوع الکترون‌های آزاد است، بین سورس و درین و زیر لایه‌ی نازک اکسید، تشکیل می‌شود (تصویر5). در این حالت می‌گوییم ترانزیستور روشن است. مقدار ولتاژِ گیت را که به ازای آن این اتفاق می‌افتد، ولتاژ آستانه می‌نامیم.

p5%20copy.jpg

صویر5- با افزایش ولتاژ گیت به تدریج تعدادی از الکترون‌های آزاد که در ناحیه‌ی سورس قرار دارند به محدوده‌ی زیر اکسید گیت وارد می‌شوند

عملکرد ترانزیستور PMOS و پدیده‌ی روشن شدن در آن مشابه ترانزیستور NMOS است، با این تفاوت که همه‌ی ولتاژها معکوس می‌شود. همان‌طور که در تصویر6 مشاهده می‌کنیم، اگر ولتاژ گیت به اندازه‌ی کافی منفی شود، لایه‌ا‌ی وارون حالت قبل (تصویر 5) در زیر لایه‌ی اکسید تشکیل می‌شود. این لایه که شامل حامل‌های بار الکتریکی از نوع حفره‌های آزاد است، برای برقراری جریان الکتریکی مسیری بین درین و سورس فراهم می‌کند.

p6%20copy.jpg

تصویر6- اگر ولتاژ گیت به اندازه‌ی کافی منفی شود، یک لایه‌ی وارون از حفره‌ها در زیر لایه‌ی اکسید تشکیل می‌شود

4- ترانزیستور MOS به عنوان کلید
همان طور که گفتيم پدیده‌ی روشن شدن ترانزیستور NMOS و PMOS یک پدیده‌ی تدریجی است. در ترانزیستور NMOS اگر ولتاژ گیت بالا باشد، سورس و درین به یکدیگر متصل هستند و اگر ولتاژ گیت پایین باشد، سورس و درین از یکدیگر جدا هستند. این پدیده مشابه عملکرد یک کلید است. همان‌گونه که اگر کلید را در یک جهت فشار دهیم، لامپ روشن می¬شود و اگر در جهت دیگر فشار دهیم لامپ خاموش می‌شود.
در ترانزیستور PMOS اگر ولتاژ گیت پایین باشد، سورس و درین به یکدیگر متصل هستند و اگر ولتاژ گیت بالا باشد، سورس و درین از یکدیگر جدا هستند. می‌بینیم که عملکرد ترانزیستور NMOS و PMOS به عنوان کلید دقیقا برعکس یکدیگر است.
عملکرد ترانزیستور MOS به عنوان کلید، ویژگی بسیار مهمی است که اساس ساخت صدها مدار الکترونیکی پیچیده و حافظه‌ها است. در مقالات بعدی به صورت ملموس‌تر و کاربردی‌تر، مختصری از اهمیت ترانزیستورها خواهیم گفت.

5- نشانه‌های مداری ترانزیستور MOS
در پایان این نوشتار، نشانه‌های مداری ترانزیستور NMOS و PMOS را معرفی می‌کنیم. در مقالات بعدی با این نشانه‌ها بیشتر سر و کار خواهیم داشت. در تصویر اول دو نوع از نشانه‌های مداری ترانزیستور NMOS و در تصویر دوم دو نوع از نشانه‌های مداری ترانزیستور PMOS را می‌بینیم.


دوستان و بازدیدکنندگان گرامی نظر یادتون نره!

گردآورنده:MHD



مطالب مشابه :


آیا می دانستید؟!

مهندسی برق ،پیام نور مشهد. پرتال دانشگاه پیام نور پیام نور مشهد; سیستم جامع




دانلود چند تا از کتاب های دانشگاهی

مهندسی برق ،پیام نور مشهد پرتال دانشگاه پیام نور پیام نور مشهد; سیستم جامع




تست هوش...

دانشجویان برق پیام نور مشهد. مطالب. پرتال دانشگاه پیام نور پیام نور مشهد; سیستم جامع




منبع تغذيه بدون ترانس

مهندسی برق ،پیام نور مشهد پرتال دانشگاه پیام نور پیام نور مشهد; سیستم جامع




وحشتناک ترین موجودات طبیعت

مهندسی برق ،پیام نور مشهد پرتال دانشگاه پیام نور پیام نور مشهد; سیستم جامع




اطلاعیه!

مهندسی برق ،پیام نور مشهد. پرتال دانشگاه پیام نور پیام نور مشهد; سیستم جامع




آشنايي با ساختار و عملکرد ترانزيستورها

مهندسی برق ،پیام نور مشهد پرتال دانشگاه پیام نور پیام نور مشهد; سیستم جامع




مدار انتقال بیسیم برق!

دانشجویان برق پیام نور مشهد. مطالب. پرتال دانشگاه پیام نور پیام نور مشهد; سیستم جامع




تصاویر استریوگرام

مهندسی برق ،پیام نور مشهد پرتال دانشگاه پیام نور پیام نور مشهد; سیستم جامع




مقاله ای کامل درمورد لامپ خلاء

مهندسی برق ،پیام نور مشهد پرتال دانشگاه پیام نور پیام نور مشهد; سیستم جامع




برچسب :