كروماتوگرافي گازي و كاربرد آن
روشهای کروماتوگرافی
روشهای کروماتوگرافی را میتوان ابتدا بر حسب ماهیت فاز متحرک و سپس بر حسب ماهیت فاز ساکن طبقهبندی کرد. فاز متحرک ممکن است گازیا مایع و فاز ساکن ممکن است جامد یا مایع باشد. بدین ترتیب فرآیند کروماتوگرافی به چهار بخش اصلی تقسیم می شود. اگر فاز ساکن جامدباشد کروماتوگرافی راكروماتوگرافي جذب سطحي و اگر فاز ساکن ،مايع باشد کروماتوگرافی را تقسیمی مینامند.
گاز کروماتوگرافی GC
كروماتوگرافي گازي يک روش فيزيکي است که براي جداسازي، شناسايي و اندازهگيري اجزايفرار به کار ميرود. به عنوان مثال جدا کردن بنزن (نقطه جوش 1/80) از سيلکوهگزان (نقطه جوش 8/80) بوسيله تقطير جزء به جزء غير ممکن است. در صورتي که آنها را در چنددقيقه ميتوان به کمک کروماتوگرافي گازي جدا نمود و شناسايي کرد. همچنين حدود 200جزء مختلف نفت خام را به آساني ميتوان تشخيص داد. اين روش سريع و ساده است و براي تشخيص ناخالصيهاي موجود در يک ماده فرار يا مقادير کم مواد ضد آفت در پوست ميوهجات و اندازهگيري گازها و آلودگي مواد به کار مي رود.
در GC با دو فاز سر و كار داريم: فاز ساكن و فاز متحرك، فاز متحرك يك گاز است و فاز ساكن مي تواند مايع يا جامد باشد. فاز متحرك هيچ نقشي در جداسازي ندارد و يكي از تفاوت هاي GC با HPLC همين موضوع است. در HPLC فاز متحرك يك مايع است كه در جداسازي نقش دارد. تنها نقش فاز متحرك در GC حمل مواد به جلو و خارج كردن آنها از ستون است. به همين دليل كيفيت جداسازي در HPLC بهتر است از GC.
ابتدا نمونه را توسط سرنگ داخل injector تزريق مي كنيم. نمونه پس از ورود به injector به بخار تبديل شده و با فاز متحرك مخلوط شده، وارد ستون مي شود. نمونه جذب ستون مي شود و در زمانهاي مختلف به وسيله گاز بي اثر از ستون بيرون مي آيد و وارد دتكتور مي شود. ستون قلب دستگاه است زيرا عمل اصلي كه جداسازي است در آنجا انجام مي شود. دتكتور شناسايي را انجام مي دهد جهت شناسايي مواد با GC از (Rt) Retention time استفاده مي شود. Rt زماني است كه طول مي كشد تا جسم از دتكتور بيرون بيايد ،يعني از زمان تزريق نمونه تا زمان ظاهرشدن پيك ها روي دستگاه كه براي يك ماده تحت شرايط ثابت، مقداري ثابت است. بنابراين از مقايسه Rt معلوم با Rt مجهول، مي توان اجزاي موجود در مجهول را تشخيص داد.
اگر مجهول و استاندارد، Rt يكسان داشتند، مي توان نتيجه گرفت كه هر دو نمونه يكي هستند.
پارامتر مهم ديگر در GC، سطح زير منحني (AUC) است. ركوردر به ما كروماتوگرامي مي دهد كه در راس هر پيك Rt را مي نويسد و AUC مربوط به آن را هم مي دهد پس كروماتوگرام حاوي دو اطلاع ارزنده است:
1- Rt براي شناسايي كيفي جسم
2- AUC براي تعيين مقدار كمي جسم
گاز حامل: يك گاز بي اثر است (He, H2, N2)، He از همه بهتر است ولي چون گران است كاربرد كمي دارد. نگهداري H2 هم خطرناك است چون قابليت انفجار دارد، بنابراين N2 استفاده مي شود.
اجزاء و قسمتهاي مختلف دستگاه GC
1- سيلندر حاوي گاز حامل، در اين دستگاه از گاز ازت كه گازي خنثي، ارزان و در دسترس است استفاده مي شود.
2- فلومتر، توسط اين قسمت از دستگاه تنظيم فشار گاز حامل صورت مي گيرد كه اگر نمونه سريعتر بيرون بيايد ممكن است دو پيك روي هم بيفتند. هر چه فلو بيشتر باشد، مواد سريعتر از ستون خارج مي شوند. . فلو برحسب ml/min است. (در كار با GC بايد نوع گاز حامل و Flow آن ذكر شود).در اين دستگاه از گاز ازت با فلو ml/min 18 استفاده شد.در اين دستگاه سه عدد فلومتر مربوط به تنظيم فلو گاز ازت، هوا و هيدروژن وجود داشت. كه هر كدام را با ميزان موردنياز تنظيم كرديم.
3- محل تزريق نمونه :(injector)دو محل تزريق در بالا و پائين وجود دارد كه نمونه را به سرعت و توسط يك سرنگ در يكي از آنها بسته به اينكه از ستون بالايي يا پاييني استفاده مي كنيم تزريق مي كنيم. حجم نمونه تزريق شده در اين آزمايش يك ميكروليتر بود. اما حجم سرنگ دستگاه ده ميكروليتر است. .با GC مي توان نمونه هاي با حجم هاي بسيار كم تا دهم هاي ميكروليتر را اندازه گيري نمود. بعد از تزريق نمونه به سرعت و بدون مكث دكمه interface را فشار مي دهيم. (حجم تزريق هم بايد در كار با GC گزارش شود).
4- ستون (column):ستون نقش اصلي جداسازي را به عهده دارد كه از جنس هاي مختلف مي باشد:ستون فولادي،مسی ،شيشه ايی يا استيل باشد .كه سخت پر مي شود و حتما بايد توسط كارخانه سازنده پر شود.
ستون مسي: انعطاف پذيري خوبي دارد و به راحتي پر مي شود زيرا مي توان آن را به صورت مستقيم پر كرد و سپس به صورت مارپيچ در آورد. ولي عيب آنها تشكيل اكسيد مس در جداره ستون مي باشد كه مي تواند برخي واكنش ها را كاتاليز كند. در حالي كه ستون هاي فولادي اين عيب را ندارند.
ستون هاي شيشه اي كه مزيت آنها اين است كه داخل آنها را مي توانيم مشاهده كنيم بنابراين اگر هوا گرفته باشد متوجه مي شويم و عيب آنها شكننده بودنشان است. ستون هاي فولادي خيلي مستحكمند و بايد در كارخانه بصورت مارپيچ در آيند، بنابراين پركردن آنها مشكل است و احتياج به دستگاه ويبراتور داريم. يك ويژگي مهم و تاثير گذار در ستون ها پلاريته آنهاست كه توسط كارخانه سازنده مشخص مي شود كه بر اين اساس مي توان ستون هاي مشابه را انتخاب كرد.
. ما در اين آزمايشگاه از ستون Capillary استفاده مي كنيم با طول حدود m 30، نوع ستون PE-1 است. N2 گاز ® فاز متحرك
GSC جامد فاز ثابت
GLC مايع
براي فاز مايع از خاكه آجر يا chromosorb p كه بي اثر است براي تثبيت مايع استفاده مي كنند آن را پر مي كنند. و مايع ديرجوش را روي خاكه آجر مي دهند و تثبيت مي كند كه معمولا پارافين يا silicon greas است.
5- Oven:قسمت گرم كننده است.سه قسمت از دستگاه بايد گرم شوند. Injector, oven و Column (كه دو عدد هستند و در بالا و پايين oven قرار مي گيرند) و نيز Detector قرار دارد
دماي ستون بايد چند درجه بالاتر از نقطه جوش دير جوش ترين جزء موجود در نمونه باشد مثلا اگر بالاترين نقطه جوش °C 150 باشد، دماي ستون °C 170 باشد.دماي injector بايد چند درجه بالاتر از ستون و دماي دتكتور هم چند درجه بالاتر از injector باشد با ستون با دو برنامه دمايي مي توان كار كرد:اگر روش كار ايزوترمال باشد به oven يك دماي ثابت مي دهيم اما اگر به روش برنامه ريزي كار كنيم، بايد به آن برنامه دمايي بدهيم.
روش Isothermal ( با يك دماي ثابت كار مي كنيم)، بيشتر زماني استفاده مي شود كه در نمونه فقط يك ماده مورد شناسايي وجود دارد يا اگر چند ماده وجود دارد، نقطه جوش آنها نزديك به هم است.
روش برنامه ريزي دمايي (programming): در مواقعي استفاده مي شود كه مواد موجود در نمونه Range وسيعي از نقطه جوش دارند و اگر ابتدا دماي Oven را بالاتر از نقطه جوش دير جوش ترين ماده قرار دهيم، مواد با نقطه جوش كمتر تجزيه خواهد شد و نمي توان آنها را شناسايي كرد. بنابراين طوري دما را تنظيم مي كنيم كه با سرعت مشخصي از چند درجه بالاتر ازمواد به ترتيب نقطه جوش از ستون بيرون مي آيند يعني هر چه تعداد كربن هاي ماده بيشتر باشد ديرتر بيرون مي آيند و پيك آنها ديرتر ظاهر مي شود. وقتي نمونه اي حاوي چند جزء با طيف وسيع BP است نمي توان از روش ايزوترمال استفاده كرد زيرا با داشتن فقط يك دما، ممكن است يك جزء خيلي سريع بيرون بيايد و از دست برود يا بيرون آمدن آن، زمان طولاني ببرد. بنابراين بايد از روش Programming استفاده كنيم، يعني از چند Oven استفاده كرده و به هر يك، دمايي خاص مي دهيم.در دستگاه ،3، Oven داريم كه از تعداد موردنياز بسته به كاربرد مي توان استفاده كرد. هر Oven مثل يك ايستگاه مي باشد كه در هر يك، ماده زماني متوقف مي باشد و سپس با Rate خاصي از هر ايستگاه به ايستگاه ديگر مي رود. پس در صورت استفاده از هر 3 Oven، 2 Rate مي گيريم:درجه حرارت داده شده به Oven ها تجربي است و مثلا روي دمايي خاص گذاشته و بررسي مي كنيم كه پيك مي گيريم يا نه ؟
اگر پيك در نمونه بهم چسبيده باشد، با كم كردن درجه حرارت Oven و فلوي گاز، پيك ها را جدا مي كنيم.اگر فقط از 2 Oven استفاده مي كرديم بايد Time3=0 ، Rate2=0 مي بود، در واقع به 3 Oven برنامه نمي دهيم. Rate بين 5-30 des/min مي تواند باشد.
نقطه جوش زود جوش ترين ماده به چند درجه بالاتر از نقطه جوش دير جوش ترين ماده برسد به اين ترتيب مي توانيم تمام مواد موجود در نمونه را شناسايي كنيم و كيفيت كار ما بالا مي رود.
6- :Detectorدتكتور بر اساس پاسخي كه مي دهد به دو دسته تقسيم مي شود:
دتكتور انتگرالي، كه پاسخ انتگرالي مي دهد. كه امروزه منسوخ شده است.
دتكتور تفكيكي، پاسخ اين دتكتور به اين صورت است كه وقتي گاز حامل به تنهايي مي آيد، خط صاف و وقتي به همراه نمونه مي آيد يك پيك مي دهد.
يكي از دتكتورهاي تفكيكي كه در GC استفاده مي شود Flame Ionization Detector (FID) مي باشد. نمونه ها بعد از اينكه از ستون خارج مي شوند وارد دتكتور مي شوند. نمونه ها در شعله دتكتور مي سوزند و ايجاد يون و الكترون مي كنند. آنچه مهم است الكترون هايي است كه توليد مي شوند. الكترونها جرياني را كه از FID عبور مي كند افزايش مي دهند و غلظت نمونه متناسب با ميزان جريان است .
براي تشكيل شعله از سوخت هيدروژن با اكسيژن هوا استفاده مي كنيم. چون نگهداري هيدروژن خطرناك است و امكان انفجار وجود دارد، يك هيدروژن ژنراتور وجود دارد كه از تجزيه آب هيدروژن توليد مي كند. براي تامين اكسيژن هم از كپسول هوا استفاده مي شود.
نشانه روشن بودن دستگاه دتكتور اين است كه بخار آب از آن خارج شود. FID حساسيت بالايي دارد و عيب آن تخريب نمونه است در اين دستگاه از FID استفاده كرديم. (نوع دتكتور هم بايد در كار تحقيقاتي ذكر شود).
7- رکوردر
چگونگي تنظيم دما:
دماي ستون را چند درجه بالاتر از نقطه جوش دير جوشترين جزء موجود در نمونه قرار مي دهيم و دماي injector را چند درجه بالاتر از ستون و نيز دماي دتكتور نيز چند درجه بالاتر از دماي injector قرار مي دهيم.
برنامه دمايي ايزوترمال:
70°C = oven ستون
90°C = Injector
mLit = مقدار تزريق 100°C= Detector
علت استفاده از استاندارد داخلي:
در روش AUC بايد از استاندارد داخلي استفاده كنيم كه علت استفاده از استاندارد داخلي، حذف خطاي حاصل از حجم تزريق مي باشد. زيرا حجم تزريق كم است و احتمال اشتباه زياد مي باشد و براي استفاده كمي و حذف اين خطا از يك استاندارد داخلي كه از لحاظ ساختمان شيميايي نزديك به نمونه باشد استفاده مي كنيم مثلا در اين آزمايش براي تعيين مقدار اتانول از بوتانول به عنوان استاندارد داخلي استفاده مي كنيم زيرا از لحاظ ساختمان شيميايي نزديك به نمونه اتانول است بنابراين ضمن اينكه پيك هاي مربوط به هر كدام جدا مي باشد، خيلي هم از هم فاصله ندارند.
کاربردها
برخی از کاربردهای مهم کروماتوگرافی گازی(GC) عبارتست از:
جداسازی و شناسائی برخی از ترکیبات آلی در صنايع نفت- گاز و پتروشيمي
تعیین ساختارترکیبات آلی در لاستیک
آنالیز برخی داروهای نانو ذرات
قسمت هاي اصلي دستگاه كروماتوگرافي گازي
مطالب مشابه :
استخدام در شرکت پتروشیمی مروارید - عسلویه
قابل توجه همشهریان عزیز. شركت پتروشيمي مرواريد مستقر در منطقه ويژه اقتصادي انرژي پارس واقع
پیروزی تیم پینگ پنگ شرکت پتروشیمی نوری در مسابقات منطقه
پيروزي تيم پينگ پنگ شركت پتروشيمي نوري در مسابقات منطقه با كسب تيم پتروشيمي مرواريد. 2-
نفت، گاز، پتروشيمي
بخشي از اخبار مرتبط بانفت و گاز و پتروشيمي در سال 1389 را و مجتمع پتروشيمي مرواريد در
کل بدهي معوق دولت به صندوق ذخيره فرهنگيان پرداخت ميشود
بر اساس اين مصوبه، 66/34درصد سهام پلور سبز، 99/48درصد سهام پتروشيمي مرواريد، 9/72درصد سهام ماشين
اخبار صنعت
شركت پتروشيمي بندر امام با ميزان فروش (پتروشيمي مهر)، الفين عسلويه (پتروشيمي مرواريد)
فرصتهاي خصوصيسازي در سال 89
در اين ميان پتروشيميهاي از سوي ديگر واگذاري 49 درصد از پتروشيمي مرواريد به صندوق
امام جمعه عسلويه: خون مردم عسلويه قابل اهدا نيست :
وي در ادامه با تقدير از همت رئيس جمهور در افتتاح پتروشيمي مرواريد و پرديس در عسلويه
كروماتوگرافي گازي و كاربرد آن
شركت پتروشيمي مرواريد. جداسازی و شناسائی برخی از ترکیبات آلی در صنايع نفت- گاز و پتروشيمي .
برچسب :
پتروشيمي مرواريد