هندسه اقلیدسی
هندسهٔ اقلیدسی به مجموعهٔ گزارههایِ هندسیای اطلاق میشود که به بررسی موجودات ریاضیاتی مثل نقطه و خط میپردازد و بر پایههائی که اقلیدس ریاضیدان یونانی در کتاب خود بهنام اصول عرضه کرده، بنا شدهاست. این قضایایِ هندسی عمدتاً توسطِ یونانیانِ باستان کشف و توسطِ اقلیدسِ اسکندرانی گردآوری شدهاند و بخش بزرگی از آن همان است که در دبیرستانها تدریس میشود. کتابِ «اصولِ» اقلیدس یکی از بزرگترین و تأثیرگذارترین کتابها چه به لحاظِ محتوا و چه از نظرِ روشِ اصلِ موضوعهایاش بودهاست. تا قرن نوزدهم میلادی هر وقت از هندسه سخن میرفت منظور هندسه اقلیدسی بود. بررسی مفاهیم هندسه اقلیدسی در دو بعد را «هندسه مسطحه» و در سه بعد «هندسه فضائی» مینامند. این مفاهیم را به ابعاد بالاتر از سه نیز میتوان تعمیم داد و همچنان آن را هندسه اقلیدسی نامید.
تمامِ هندسهٔ اقلیدسی (تمامِ قضیههایی که در دبیرستان میخوانیم، قضیهٔ فیثاغورس و غیره) میتوانند از پنج اصلِ موضوعهٔ زیر استخراج شوند:
- از هر دو نقطه یک خطِ راست میگذرد.
- هر پارهخط را میتوان تا بینهایت رویِ خطِ راست امتداد داد.
- با یک نقطه به عنوانِ مرکز و یک پارهخط به عنوانِ شعاع میتوان یک دایره رسم نمود.
- همهٔ زوایایِ قائمه با هم برابر اند.(این اصل معیاری طبیعی برای اندازهگیری زاویهها در اختیار میگذارد.)
- اگر یک خط دو خطِ دیگر را قطع کند، آن دو خط در طرفی که جمعِ زوایایِ داخلیِ تولید شده توسطِ خطِ مورب کمتر از دو قائمهاست به هم میرسند (خود یا امتدادشان).
برایِ بیانِ این اصولِ موضوعه به مفاهیمی مانندِ نقطه و خط نیاز داریم. همانطور که باید چند گزاره را بدونِ اثبات بپذیریم تا بقیهٔ گزارهها استخراج شوند لازم است چند مفهوم را نیز بدونِ تعریف بپذیریم. به این مفاهیم «تعریفنشدهها» میگویند. همانطور که دیده میشود اصولِ هندسهٔ اقلیدسی به جز اصلِ پنجم بسیار ساده و بدیهی به نظر میآیند. به همیندلیل از زمانِ اقلیدس ریاضیدانانِ بیشماری در شرق و غرب (منجمله خیام ریاضیدانِ ایرانی) تلاش کردهاند اصلِ آزاردهندهٔ پنجم را به اثبات برسانند. این کار همواره شکست خوردهاست. سپس برخی ریاضیدانان تلاش نمودند خلافِ اصلِ پنجم را فرض کنند تا ببینند آیا هندسهای متناقض پدید میآید یا نه. از آنجا که هیچ تناقضی در هندسههایِ دارایِ اصلِ پنجمِ متفاوت دیده نشد به آنها نامِ هندسه نااقلیدسی را دادند. در نتیجه این مسأله مطرح گردید که تجربه کدام هندسه را تأیید میکند. نظریهٔ نسبیت عام به این پرسش پاسخ میدهد.
دو مقدار مساوی بامقدار سوم با هم مساوی اند.اگر به دو مقدار مساوی مقادیر مساوی اضافه کنیم، حاصل جمعها با هم مساوی اند.اگر از دو مقدار مساوی مقادیر مساوی کم کنیم، باقیماندهها با هم مساوی اند.دو چیز قابل انطباق با هم برابر اند.کل از جزء بزرگتر است. کل > جزمطالب مشابه :
هندسه نا اقلیدسی
ریاضیات - هندسه نا اقلیدسی - این وبلاگ برای دانش آموزان راهنمایی و دبیرستان مناسب بوده و
هندسه اقلیدسی
aminlotfi1989 - هندسه اقلیدسی - هندسهٔ اقلیدسی به مجموعهٔ گزارههایِ هندسیای اطلاق میشود که
از هندسه اقلیدسی تا کشف هندسه های نا اقلیدسی 1
فلسفه علم - از هندسه اقلیدسی تا کشف هندسه های نا اقلیدسی 1 -
اقليدس-هندسه ي اقليدسي-هندسه ي نا اقليدسي
تاریخ و فلسفه علم - اقليدس-هندسه ي اقليدسي-هندسه ي نا اقليدسي - ویل دورانت: تاریخ را
هندسه اقلیدسی و نا اقلیدسی
ریاضی - هندسه اقلیدسی و نا اقلیدسی - مطالب آموزشی در ارتباط با ریاضیات دوره عمومی و متوسطه
تفاوت هندسه اقلیدسی و نا اقلیدسی
براساس این قوانین، هندسه اقلیدسی تکامل یافت. هر چه زمان میگذشت، شاخههای دیگری از هندسه توسط
هندسه ی اقلیدسی
هندسه ی اقلیدسی بر اساس پنچ اصل موضوع زیر شکل گرفت اصل اول - از هر نقطه می توان خط مستقیمی
هندسه اقلیدسی
ریاضی باحال - هندسه اقلیدسی - آموزش ریاضی + سرگرمی های آن + نرم افزار های ریاضی - ریاضی باحال
تفاوت هندسه اقلیدوسی با نااقلیدوسی!!!
MATH WORLD - تفاوت هندسه اقلیدوسی با نااقلیدوسی!!! - Kopler said: The God created the world with number's tongue.
هندسه اقلیدسی
سرزمین ریاضیات - هندسه اقلیدسی - علومی که از یونان باستان توسط اندیشمندان اسلامی محافظت و
برچسب :
هندسه اقلیدسی