آموزش انتگرال
آموزش انتگرال
انتگرالها يک بحث اساسي رياضيات عالي را تشکيل داده که ميتوان کاربرد آنرا درتمام علوم طبيعي، انساني وغيره مورد مطالعه قرارداد.
اولين بار لايب نيتس نماد استانداردي براي انتگرال معرفي کرد. aو b نقاط ابتدا و انتهاي بازه هستند و f تابعي انتگرالپذير است و dx نمادي براي متغير انتگرال گيري است.
از لحاظ تاريخي dx يک کميت بي نهايت کوچک را نشان ميدهد. هر چند در تئوريهاي جديد، انتگرال گيري بر پايه متفاوتي پايه گذاري شده است.
تابع اوليه
هر گاه معادله مشتق تابعي معلوم باشد وبخواهيم معادله اصلي تابع را تعيين کنيم اين عمل را تابع اوليه مي ناميم.
تعريف: تابع اوليه y = f(x)را تابعي مانند Y = F(x) + c مي ناميم،هرگاه داشته باشيم:
cعدد ثابت (y = F(x) + c)' = y = f(x)
انتگرال نامعين
تعريف:هرگاه معادله ديفرانسيلي تابعي معلوم باشد وبخواهيم معادله اصلي تابع را معلوم کنيم اين عمل راانتگرال نا معيين ناميده و آن را با نماد نمايش مي دهند.
بنا به تعريف نماد را انتگرال نامعين ناميده وحاصل آن را تابعي مانندF(x) + c در نظر ميگيريم هر گاه داشته باشيم: با شرط: (F(x) + c)' = f(x)
انتگرال معين
بنا به تعريف نماد را انتگرال معين ناميده و حاصل آن را عددي به صورت زير تعريف ميکنيم: a
aوb را به ترتيب کرانهاي بالا و پايين انتگرال ميناميم.
تابع انتگرالپذير
اگر تابعي داراي انتگرال باشد به آن انتگرالپذير گويند.
تعبير هندسي انتگرال
از نظر هندسي انتگرال برابر است با مساحت سطح محصور زير نمودار.
نکته! انتگرال نمودار سه بعدي(انتگرال سه گانه)معرف حجم محصور زير نمودار است.
انتگرال يک تابع مثبت پيوسته در بازه (0,10) در واقع پيدا کردن مساحت محصور بين خطوط x=0 , x=10 و خم منحني fx است. aو b نقاط ابتدا و انتهاي بازه هستند و f تابعي انتگرالپذير است و dx نمادي براي متغير انتگرال گيري است.
انتگرال يک تابع مساحت زير نمودار آن تابع است.
انتگرال گيري
انتگرال گيري به معني محاسبه سطح زير نمودار با استفاده از روشها وقوانين انتگرال گيري است.
1.f تابعي در بازه (a,b) در نظر ميگيريم. 2.پاد مشتق f را پيدا ميکنيم که تابعي است مانند f که و داريم: 3.قضيه اساسي حساب ديفرانسيل و انتگرال را در نظر ميگيريم:
بنابراين مقدار انتگرال ما برابر خواهد بود.
به اين نکته توجه کنيد که انتگرال واقعاً پاد مشتق نيست (يک عدد است) اما قضيه اساسي به ما اجازه ميدهد تا از پاد مشتق براي محاسبه مقدار انتگرال استفاده کنيم. معمولاً پيدا کردن پاد مشتق تابع f کار سادهاي نيست و نياز به استفاده از تکنيکهاي انتگرالگيري دارد اين تکنيکها عبارتاند از :
- انتگرال گيري بهوسيله تغيير متغير
- انتگرال گيري جزء به جزء :
- انتگرال گيري با تغيير متغير مثلثاتي
- انتگرال گيري بهوسيله تجزيه کسرها
روش هايي ديگر نيز وجود دارد که براي محاسبه انتگرالهاي معين به کار ميرود همچنين ميتوان بعضي از انتگرال ها با ترفند هايي حل کرد براي مثال ميتوانيد به انتگرال گاوسي مراجعه کنيد.
محاسبه سطح زير نمودار بهوسيله مستطيل هايي زير نمودار. هر چه قدرعرض مستطيل ها کوچک ميشوندمقدار دقيق تري از مقدار انتگرال بدست ميآيد.
انتگرال هايي معين ممکن است با استفاده از روش هاي انتگرال گيري عددي ،تخمين زده شوند.يکي از عموميترين روش ها ،روش مستطيلي ناميده ميشود در اين روش ناحيه زير نمودار تابع به يک سري مستطيل تبديل شده و جمع مساحت آنها نشان دهنده مقدار تقريبي انتگرال است. از ديگر روش هايي معروف براي تخمين مقدار انتگرال روش سيمپسون و روش ذوزنقهاي است. اگر چه روش هاي عددي مقدار دقيق انتگرال را به ما نميدهند ولي در بعضي از مواقع که انتگرال تابعي قابل حل نيست يا حل آن مشکل است کمک زيادي به ما ميکند.
مطالب مشابه :
آموزش کامل انتگرال
آموزش کامل انتگرال در حل انتگرالها با روش تغییر متغیر ، به جای تابع پیوسته و مشتق
آموزش انتگرال
آموزش انتگرال - آموزش و هر گاه معادله مشتق 3.قضيه اساسي حساب ديفرانسيل و انتگرال
آموزش انتگرال به همراه فرمولهای انتگرال
آموزش انتگرال به همراه و انتگرال را در که انتگرال واقعاً پاد مشتق
آموزش انتگرال
آموزش انتگرال. ديفرانسيل و انتگرال را در نظر کنيد که انتگرال واقعاً پاد مشتق
آموزش کامل انتگرال
انتگرال نامعین . مجموعه همه پاد مشتقهای یک تابع چون را انتگرال نامعین نسبت به مینامند و
حساب دیفرانسیل و انتگرال
حساب دیفرانسیل و انتگرال. سوالات نیمسال اول و دوم پاورپوینت آموزش مشتق و ضریب
آموزش انتگرال
آموزش انتگرال دیفرانسیل و انتگرال را در نظر کنید که انتگرال واقعاً پاد مشتق
مشتق گیری و انتگرال گیری عددی با متلب
در این پست روشی ساده برای محاسبه ی مشتق و انتگرال یک تابع با استفاده از آموزش برنامه
برچسب :
آموزش مشتق و انتگرال