دایره
دایره: (circle)
مجموعه نقاطی از صفحه که فاصله ی آن از یک نقطه به نام مرکز برابر باشند ، دایره نامیده می شود.
دایره ی c به مرکز o و شعاع R را با نماد نشان می دهیم .
وتر دایره :(circle chord) پاره خطی که دو نقطه از محیط دایره را به هم وصل می کند . هر دایره بیشمار وتر دارد . مانند وتر های AB و CD در دایره ی C .
قطر دایره:(circle axis) بزرگترین وتر در هر دایره را قطر می نامند . قطر وتر ی از دایره است که از مرکز می گذرد مانند قطر MN در دایره ی C.
کمان دایره :(circlearc) قسمتی از محیط دایره را می گویند که به دو نقطه روی محیط دایره محدود شده باشد. اگر دو نقطه ی A و B را روی دایره C در نظر بگیریم دو کمان پدید می آید ، کمان کوچکتر را به صورت و کمان بزرگتر را به صورت می خوانیم .
í نقطه و دایره : نقطه و دایره نسبت به هم 3 وضعیت دارند :1 نقطه داخل دایره است. 2 نقطه روی دایره است. 3 نقطه خارج دایره است .
íوضع یک خط و یک دایره نسبت به هم:
خط و دایره نسبت به هم سه حالت دارند:
1. خط خارج دایره است که در این صورت فاصله ی خط تا مرکز دایره از شعاع بزرگتر است. یعنی d
2.خط بر دایره مماس است.که در این صورت فاصله ی خط تا مرکز دایره با شعاع مساوی است . یعنی d = r
3.خط دایره را در دو نقطه قطع می کند که در این صورت فاصله ی خط تا مرکز دایره از شعاع کو چکتر است.
یعنی: d < r
íزاویه و دایره:
زاویه ی مرکزی:زاویه ای که رأس آن مرکز دایره باشد زاویه ی مرکزی نامیده می شود.
در شکل مقابل زاویه ی AOB یک زاویه مرکزی است و کمان AB کمان مقابل آن می باشد.
نکته: اندازه ی زاویه ی مرکزی با کمان مقابلش مساوی است.
زاویه ی محاطی: زاویه ی محاطی زاویه ای است که رأس آن روی دایره و اضلاع آن دو وتر از همان دایره باشند .
در شکل مقابل زاویه ی یک زاویه ی محاطی است و کمان BC ، کمان مقابل آن می باشد.
نکته :اندازه ی زاویه ی محاطی نصف کمان مقابل آن است.
زاویه ی ظلّی : هر زاویه ای که رأسش روی دایره و یک ضلع آن وتری از دایره و ضلع دیگرش بر دایره مماس باشد ، زاویه ی ظّلی نامیده می شود.
در شکل مقابل یک زاویه ی ظّلی و کمان AB کمان مقابل به زاویه ی ظّلی A می باشد.
نکته : اندازه ی زاویه ی ظّلی نصف کمان مقابل آن است.
íمثلث و دایره :
دایره ی محاطی مثلث :
3 نیمساز زوایای داخلی مثلث یکدیگر را در یک نقطه مانند o قطع می کنند.می دانیم فاصله ی نقطه ی o از 3 ضلع مثلث به یک فاصله است (با توجه به مبحث تساوی مثلث ها)؛ یعنی اگر عمودی ها ی OK ،OH و OE را بر اضلاع مثلث فرود آوریم ،داریم : OE=OH=OK
پس اگر دایره ای به مرکز O و شعاع OH رسم کنیم ، این دایره در K و H و E بر سه ضلع مثلث مماس خواهد بود .
این دایره ، دایره ی محاطی مثلث نام دارد . مرکز دایره ی محاطی مثلث نقطه ی تلاقی نیمساز های زوایای داخلی آن است.
محاسبه ی شعاع دایره ی محاطی مثلث:
شعاع دایره ی محاطی مثلث را با حرف r نشان می دهیم .
دایره ی محیطی مثلث:
سه عمود منصف اضلاع یک مثلث بر یک نقطه مانند O می گذرند. می دانیم فاصله ی O از سه رأس مثلث به یک فاصله است، یعنی OA=OB=OC . (با توجه به مبحث تساوی مثلث ها)
اگر به مرکز O و شعاع مثلأ OA دایره ای رسم کنیم این دایره بر دو رأس دیگر مثلث نیز عبور خواهد کرد . به این دایره ، دایره ی محیطی مثلث می گویند .
مرکز دایره ی محیطی مثلث نقطه ی تقاطع عمود منصف های اضلاع آن است.
محاسبه ی شعاع دایره ی محیطی مثلث:
شعاع دایره ی محیطی مثلث را با حرف R نشان می دهند . در شکل زیر به دو مثلث توجه کنید ؛ این دو مثلث با هم متشابهند .
تناسب اضلاع متناظر دو مثلث را می نویسیم:
لذا در هر مثلث حاصل ضرب دو ضلع برابر است با : قطر دایره ی محیطی در ارتفاع وارد بر ضلع سوم یعنی :
از طرفی می دانیم مساحت مثلث برابر است با :
حالا با توجه به رابطه ی (1) و (2) می توان نوشت:
دایره و چند ضلعی های منتظم :
چند ضلعی منتظم:چند ضلعی که تمام اضلاع آن با هم و همه ی زاویه هایش نیز با هم مساوی باشند یک چند ضلعی منتظم نامیده می شود . مانند مربع که یک چهار ضلعی منتظم است.
رسم چند ضلعی منتظم:
برای رسم یک n ضلعی منتظم کافی است دایره ای را به n قسمت مساوی تقسیم کرده و نقاط تقسیم را به هم وصل کنیم .
تقسیم دایره به n قسمت مساوی به صورت زیر انجام می شود:
1. یک زاویه ی مرکزی به اندازه ی رسم کنیم .
2.وتر نظیر این زاویه مرکزی را می کشیم .
3. پرگار را به اندازه ی این وتر باز کرده و پشت سر هم کمان های متوالی می زنیم تا دایره به n قسمت مساوی تقسیم شود .
مطالب مشابه :
شعاع دایره محیطی و محاطی
محاسبه ی شعاع دایره ی محاطی مثلث: شعاع دایره ی محاطی مثلث را با حرف r نشان می دهیم .
دایره
محاسبه ی شعاع دایره ی محاطی شعاع دایره ی محیطی مثلث را با حرف r نشان می دهند .
روش محاسبه سطح مثلث و اشکال هندسی
برای محاسبه مساحت یک مثلث باید طول ارتفاع مثلث و دایره c به مرکز O و شعاع oB را قاعده ی مخروط
تشابه دوشکل هندسی
محاسبه ی شعاع دایره ی محاطی مثلث: شعاع دایره ی محیطی مثلث را با حرف r نشان می دهند .
مساحت دایره
حالا می توانیم مساحت شکل را با فرمول مستطیل محاسبه کنیم. 3- شعاع دایره ای 7 سانتی متر است
مثلث و دایره ، چند ضلعي منتظموچند نكته تكميلي
محاسبه ی شعاع دایره ی محاطی مثلث: شعاع دایره ی محیطی مثلث را با حرف r نشان می دهند .
برچسب :
محاسبه شعاع دایره