تحلیل واریانس

تحلیل آماری - انواع آزمون های آماری

آزمون های T :



آزمون T به منظور دستیابی به اینکه آیا تفاوت بین میانگین های دو گروه از نظر آماری معنی دار هست یا نه مورد استفاده قرار می گیرد. چنانچه گروه ها همبسته باشند باید از آزمون T همبسته و در صورتی که گروه ها مستقل باشند باید از آزمون T مستقل استفاده کرد. آزمون T همبسته : این روش زمانی مورد استفاده قرار می گیرد که دو موضوع یا متغیر در مورد یک گروه مورد بررسی قرار می گیرد. مانند نمونه: میزان تمایل به خشونت قبل و بعد از اکران فیلم خشن برای گروهی از دانش آموزان. آزمون T مستقل : این آزمون زمانی مورد استفاده قرار می گیرد که بخواهیم میانگین بین دو گروه از افراد، که از همدیگر متفاوت هستند را مقایسه کنیم. مانند نمونه: مقایسه میانگین تفاوت در میزان گرایش به دینداری بین زنان و مردان.


تحلیل واریانس(ANOVA ) :



تحلیل واریانس که به آن ANOVA یا F نیز می گویند، یکی از تکنیک های آماری موثر و پرکاربرد در تحقیقات اقتصادی، اجتماعی، علوم تربیتی، روانشناسی، مدیریت و حتی کشاورزی، بیولوژی و غیره است. زمانی که محقق بخواهد به بررسی تفاوت میانگین های بیش از دو جامعه بپردازد، بکارگیری آزمون هایی همچون T امکانپذیر نخواهد بود. برای این منظور در اینگونه تحقیقات از روش تحلیل واریانس یا آزمون F استفاده می گردد. تحلیل واریانس در واقع روشی برای آزمایش تفاوت بین گروه های مختلف داده ها یا نمونه هاست. این روش کل واریانس موجود در یک مجموعه از داده ها را به دو بخش تقسیم می کند. بخشی از این واریانس ممکن است به خاطر شانس و تصادف باشد و بخش دیگر ممکن است ناشی از دلایل یا عوامل خاصی باشد. از طرف دیگر واریانس موجود ممکن است ناشی از تفاوت بین گروه های مورد مطالعه و یا بخاطر تفاوت موجود در درون نمونه ها حادث شده باشد. بنابر این ANOVA به عنوان یک روش تحلیل، با بررسی مجموع این تفاوت ها به تبیین پدیده مورد نظر می پردازد. از طریق این گونه تحلیل ها ست که محقق می تواند بررسی کند که آیا بین درآمد گروه های مختلف شغلی تفاوت معنی داری وجود دارد یا نه؟ تحلیل واریانس یک طرفه : این آزمون زمانی مورد استفاده قرار می گیرد که بخواهیم میانگین سه گروه یا بیشتر را مورد مقایسه قرار دهیم. مثال: بررسی میزان رضایت از زندگی در بین اقوام مختلف ایران. تحلیل واریانس دو طرفه : اگر محقق بخواهد تنها یک متغیر (مانند درآمد) را انتخاب کند و بخواهد تفاوت بین طبقات یا گروه های مختلف را بررسی کند در این صورت از تحلیل واریانس یک طرفه استفاده می کند. اما اگر بخواهد اثر دو عامل را بر روی یک متغیر وابسته بررسی کند باید از تحلیل واریانس دوطرفه استفاده می شود. مثال: یک موسسه آموزشی میزان یادگیری فراگیران را بر اساس روش های مختلف آموزشی و حجم تکلیف تعیین شده برای فراگیران طبقه بندی می کند. سپس می خواهد بداند که آیا تفاوت در میزان یادگیری در روش آموزش کلاسی با آموزش انفرادی در حجم تکلیف کم به مراتب کمتر از حجم تکلیف زیاد است؟ تحلیل واریانس برای گروه های همبسته : این آزمون زمانی مورد استفاده قرار می گیرد که تنها یک گروه وجود دارد و چندین آزمون بر روی آنها اعمال می شود. مثال: بررسی مقایسه نمره دانش آموزان یک کلاس در 3 روش تدریس درس ریاضی.


تحلیل واریانس چند متغیره (MANOVA ) :

تحلیل واریانس چند متغیره (MANOVA ) نیز مانند تحلیل واریانس (ANOVA ) با بررسی تفاوت بین گروه ها سر و کار دارد. با این تفاوت که تحلیل واریانس یک روش یک متغیره بوده و سعی می کند تا از این طریق به سنجش تفاوت گروه ها بر اساس یک متغیر وابسته کمی بپردازد.

در حالی که تحلیل واریانس چند متغیره با بیش از یک متغیر وابسته سر وکار داشته و سعی می کند تا به بررسی و سنجش تفاوت گروه ها بر اساس چندین متغیر وابسته کمی به طور همزمان بپردازد. به عبارت دقیق تر هر گاه محقق به جای یک متغیر وابسته با چندین متغیر وابسته مواجه شود برای آزمون تفاوت بین گروه ها از روش F تست استفاده می کند، به طوری که با تکرار آزمون در هر مرحله تنها یک متغیر وابسته مورد بررسی قرار می گیرد و این تکرار تا زمانی ادامه پیدا می کند که کلیه متغیرهای وابسته به طور جداگانه مورد آزمون قرار گیرند. اشکال وارده بر روش T تست در خصوص مقایسه دو به دو میانگین گروه ها در مواقعی که بیش از دو گروه وجود دارد، در این شیوه نیز قابل مشاهده است.

زمانی که بیش از یک متغیر وابسته وجود داشته باشد ممکن است همبستگی و ترکیب خطی متغیرهای فوق روابط و نتایج جدیدی را به وجود آورند که در استفاده از تحلیل واریانس یک متغیره (ANOVA ) راه حل مناسبی به نظر نمی رسد. برای حل این مشکل باید از تحلیل واریانس چند متغیره (MANOVA ) استفاده کرد.

آزمون Post Hoc :

پس از این که، این نتیجه حاصل شد که بردارهای میانگین گروه ها با هم برابر نیستند ممکن است محقق درصدد باشد تا مقایسه های دیگری را نیز در بین گروه ها انجام دهد. به عنوان مثال ممکن است فردی بخواهد بداند که آیا تفاوتی بین گروه ها در یک متغیر وابسته خاص یا متغیر ترکیبی وجود دارد یا خیر؟ برای این کار آماره مقایسه مقید شفه بین گروه ها، دانکن و توکی بر اساس هر یک از متغیر های وابسته، از جمله مقایسه هایی است که انجام می گیرد. بجز این تکنیک ها، روش های دیگری نیز وجود دارند که یکی از آنها تحلیل گام به پیش (Step-down analysis ) می باشد . این روش با حذف اثرات سایر متغیرهای وابسته آماری F یک متغیره، برای یک متغیر وابسته محاسبه می کند.

فرآیند محاسبه آن شباهت زیادی به روش گام به گام در رگرسیون دارد. اما در اینجا، این موضوع بررسی می شود که آیا یک متغیر وابسته خاص، به صورت یکسان در تفاوت بین گروه ها نقش ایفا می کند و این ارتباط با سایر متغیر ها ناهمبسته است یا خیر. این فرآیند از طریق مقایسه مقید هلمرت نیز امکانپذیر است. روش دیگر در این زمینه توابع تشخیصی، به ویژه اولین تابع تشخیصی است. این تکنیک مشخص می کند که کدامیک از متغیرها بهتر تفاوت بین گروه ها را نشان می دهد.


مطالب مشابه :


آموزش تصویری spss=تحلیل واریانس یک راهه

تحلیل واریانس یک طرفه و دو




آنالیز واریانس یک طرفه قسمت دوم One Way ANOVA

» تحلیل واریانس داده های رتبه Means را نیز برای انجام آنالیز واریانس یک طرفه مورد بررسی




تحلیل واریانس

تحلیل واریانس یک طرفه : با این تفاوت که تحلیل واریانس یک روش یک متغیره بوده و سعی می کند




آنالیز واریانس دوطرفه ANOVA Tow Vey

مشاوره،تحلیل آماری پایان نامه رضا بهرام




تحلیل تخصصی داده های پرسشنامه ای با SPSS

- تحلیل واریانس یک طرفه، دو طرفه و




نمونه کار spss

انجام پایان نامه و پروژه های آماری spss و تحلیل spss با بهترین ( تحلیل واریانس یک طرفه و t




نمونه سوال تشریحی از آمار

7- آز آزمون f ( تحلیل واریانس یک طرفه) و شرط استفاده از آن چیست؟ 8




برچسب :